Skip to main content
Log in

The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

TiO2 photocatalytic and near-neutral photo-Fenton processes were tested under simulated solar light to degrade two models of natural organic matter - resorcinol (R) (which should interact strongly with TiO2 surfaces) and hydroquinone (H) - separately or in the presence of bacteria. Under similar oxidative conditions, inactivation of Escherichia coli, Shigella sonnei and Salmonella typhimurium was carried out in the absence and in the presence of 10 mg L−1 of R and H. The 100% abatement of R and H by using a TiO2 photocatalytic process in the absence of bacteria was observed in 90 min for R and in 120 min for H, while in the presence of microorganisms abatement was only of 55% and 35% for R and H, respectively. Photo-Fenton reagent at pH 5.0 completely removed R and H in 40 min, whereas in the presence of microorganisms their degradation was of 60% to 80%. On the other hand, 2 h of TiO2 photocatalytic process inactivated S. typhimurium and E. coli cells in three and six orders of magnitude, respectively, while S. sonnei was completely inactivated in 10 min. In the presence of R or H, the bacterial inactivation via TiO2 photocatalysis was significantly decreased. With photo-Fenton reagent at pH 5 all the microorganisms tested were completely inactivated in 40 min of simulated solar light irradiation in the absence of organics. When R and H were present, bacterial photo-Fenton inactivation was less affected. The obtained results suggest that in both TiO2 and iron photo-assisted processes, there is competition between organic substances and bacteria simultaneously present for generated reactive oxygen species (ROS). This competition is most important in heterogeneous systems, mainly when there are strong organic-TiO2 surface interactions, as in the resorcinol case, suggesting that bacteria-TiO2 interactions could play a key role in photocatalytic cell inactivation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Richardson, T. A. Ternes, Water analysis: emerging contaminants and current issues, Anal. Chem., 2005, 77, 3807–3838.

    Article  CAS  PubMed  Google Scholar 

  2. T. Bond, E. H. Goslan, S. A. Parsons, B. Jefferson, Treatment of disinfection by-products precursors, Environ. Technol., 2011, 32, 1–25.

    Article  CAS  PubMed  Google Scholar 

  3. K. Lemarchand, P. Lebaron, Occurrence of Salmonella spp. and Cryptosporidium spp. in a French coastal watershed: relationship with fecal indicators, FEMS Microbiol. Lett., 2003, 218, 203–209.

    Article  CAS  PubMed  Google Scholar 

  4. M. Woolhouse, D. T. Haydon, R. Antia, Emerging pathogens: the epidemiology and evolution of species jumps review, Trends Ecol. Evol., 2005, 20, 238–244.

    Article  PubMed  PubMed Central  Google Scholar 

  5. WHO, Microbial fact sheets, in Guidelines for Drinking-water Quality, WHO, Geneva, 2006, pp. 221-294.

  6. A. Moncayo-Lasso, C. Pulgarin, N. Benitez, Degradation of DBPs’ precursors in river water before and after slow sand filtration by photo-Fenton process at pH 5 in a solar CPC reactor, Water Res., 2008, 42, 4125–4132.

    Article  CAS  PubMed  Google Scholar 

  7. A. Markowska-Szczupak, K. Ulfig, A. W. Morawski, The application of titanium dioxide for deactivation of bioparticulates: an overview, Catal. Today, 2011, 169, 249–257.

    Article  CAS  Google Scholar 

  8. J. A. Ibañez, M. I. Litter, R. A. Pizarro, Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae comparative study with other Gram (-) bacteria, J. Photochem. Photobiol., A, 2003, 157, 81–85.

    Article  CAS  Google Scholar 

  9. M. Cho, H. Chung, W. Choi, J. Yoon, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Water Res., 2004, 38, 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  10. H. M. Coleman, C. P. Marquis, J. A. Scott, S.-S. Chin, R. Amal, Bactericidal effects of titanium dioxide-based photocatalysts, Chem. Eng. J., 2005, 113, 55–63.

    Article  CAS  Google Scholar 

  11. M. Cho, Y. Lee, J. Yoon, Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs, Appl. Environ. Microbiol., 2004, 70, 1129–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. K. Bennabou, Z. Derriche, C. Felix, V. Moules, P. Lejeune, C. Guillard, Photocatalytic inactivation of Escherichia coli. Effect of concentration of TiO2 and microorganism and intensity of UV irradiation, Appl. Catal., B, 2007, 76, 257–263.

    Article  CAS  Google Scholar 

  13. A. G. Rincon, C. Pulgarin, Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water, Appl. Catal., B, 2006, 63, 222–231.

    Article  CAS  Google Scholar 

  14. J. A. Byrne, P. A. Fernández-Ibañez, P. S. M. Dunlop, D. M. A. Alrousan, J. W. J. Hamilton, Photocatalytic enhancement for solar disinfection of water: a review, Int. J. Photoenergy, 2011, 798051. DOI: 10.1155/2011/798051

    Google Scholar 

  15. F. Sciacca, J. A. Rengifo-Herrera, J. Wéthé, C. Pulgarin, Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella sp. in PET bottles by H2O2 addition on natural water of Burkina Faso containing dissolved iron, Chemosphere, 2010, 78, 1186–1191.

    Article  CAS  PubMed  Google Scholar 

  16. D. Spuhler, J. A. Rengifo-Herrera, C. Pulgarin, The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K-12, Appl. Catal., B, 2010, 96, 126–141.

    Article  CAS  Google Scholar 

  17. A. G. Rincon, C. Pulgarin, Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale. Implications in solar disinfection at low temperature of large quantities of water, Catal. Today, 2007, 122, 128–136.

    Article  CAS  Google Scholar 

  18. A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 1995, 95, 735–758.

    Article  CAS  Google Scholar 

  19. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95, 69–69.

    Article  CAS  Google Scholar 

  20. A. Mills, R. Davies, D. Worsley, Water purification by semiconductor photocatalysis, Chem. Soc. Rev., 1993, 22, 417–426.

    Article  CAS  Google Scholar 

  21. A. Fujishima, X. Zhang, D. T. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 2008, 63, 515–582.

    Article  CAS  Google Scholar 

  22. J. Bandara, C. Pulgarin, J. Kiwi, P. Péringer, Chemical (photo-activated) coupled biological homogeneous degradation of p-nitro-toluene-sulfonic acid in flow reactor, J. Photochem. Photobiol., A, 1997, 111, 253–263.

    Article  CAS  Google Scholar 

  23. C. Pulgarin, J. Kiwi, Overview of photocatalytic and electrocatalytic pretreatment of industrial non-biodegradable pollutants and pesticides, Chimia, 1996, 50, 50–56.

    CAS  Google Scholar 

  24. Y. Sun, T. L. Huang, Photochemical reactions involved in the total mineralization of 2, 4-D by Fe3+/H2O2/UV, Environ. Sci. Technol., 1993, 27, 304–310.

    Article  Google Scholar 

  25. H. Fallmann, T. Krutzler, R. Bauer, S. Malato, J. Blanco, Applicability of the photo-Fenton method for treating water containing pesticides, Catal. Today, 1999, 54, 309–319.

    Article  CAS  Google Scholar 

  26. J. J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol., 2006, 36, 1–84.

    Article  CAS  Google Scholar 

  27. F. Herrera, C. Pulgarin, V. Nadtochenko, J. Kiwi, Accelerated photo-oxidation of concentrated p-coumaric acid in homogeneous solution. Mechanistic studies, intermediates and precursors formed in the dark, Appl. Catal., B, 1998, 17, 141–156.

    Article  CAS  Google Scholar 

  28. T. Bond, E. H. Goslan, S. A. Parsons, B. Jefferson, Treatment of disinfection by-product precursors, Environ. Technol., 2011, 32, 1–25.

    Article  CAS  PubMed  Google Scholar 

  29. A. G. Rincón, C. Pulgarin, Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K-12 photocatalytic inactivation by TiO2: implications in solar water disinfection, Appl. Catal., B, 2004, 51, 283–302.

    Article  CAS  Google Scholar 

  30. H. Gulley-Stahl, P. A. Hogan II, W. L. Schmidt, S. J. Wall, A. Buhrlage, H. A. Bullen, Surface complexation of catechol to metal oxides: an ATR-FTIR adsorption and dissolution study, Environ. Sci. Technol., 2010, 44, 4116–4121.

    Article  CAS  PubMed  Google Scholar 

  31. J. Araña, J. M. Doña Rodriguez, O. Gonzales Díaz, J. A. Herrera-Melián, C. Fernández Rodríguez, J. Pérez Peña, The effect of acetic acid on the photocatalytic degradation of catechol and resorcinol, Appl. Catal., A, 2006, 299, 274–284.

    Article  CAS  Google Scholar 

  32. W. Xu, D. Raftery, Photocatalytic oxidation of 2-propanol on TiO2 powder and TiO2 monolayer catalysts studied by solid-state NMR, J. Phys. Chem. B, 2001, 105, 4343–4349.

    Article  CAS  Google Scholar 

  33. R. Enriquez, P. Pichat, Different net effect of TiO2 sintering temperature on the photocatalytic removal rates of 4-chlorophenol, 4-chlorobenzoic acid, and dichloroacetic acid in water, J. Environ. Sci. Health, Part A, 2006, 41, 955–966.

    Article  CAS  Google Scholar 

  34. A. G. Rincon, C. Pulgarin, N. Adler, P. Peringer, Interaction between E. coli inactivation and DBP-precursors - dihydroxybenzene isomers - in the photocatalytic process of drinking-water disinfection with TiO2, J. Photochem. Photobiol., A, 2001, 139, 233–241.

    Article  CAS  Google Scholar 

  35. D. M. A. Alrousan, P. S. M. Dunlop, T. A. McMurray, J. A. Byrne, Photocatalytic inactivation of E. coli in surface water using immobilized nanoparticle TiO2 films, Water Res., 2009, 43, 47–54.

    Article  CAS  PubMed  Google Scholar 

  36. M. Berney, H-U. Weilenmann, A. Simonetti, T. Egli, Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella typhimurium and Vibrio cholerae, J. Appl. Microbiol., 2006, 101, 828–836.

    Article  CAS  PubMed  Google Scholar 

  37. D. Gumy, C. Morais, P. Bowen, C. Pulgarin, S. Giraldo, R. Hadju, J. Kiwi, Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: influence of isoelectric point, Appl. Catal., B, 2006, 63, 76–84.

    Article  CAS  Google Scholar 

  38. L. Fang, P. Cai, W. Chen, W. Liang, Z. Hong, Q. Huang, Impact of cell wall structure on the behaviour of bacterial cells in the binding of cooper and cadmium, Colloids Surf., A, 2009, 347, 50–55.

    Article  CAS  Google Scholar 

  39. G. Gogniat, M. Thyssen, M. Denis, C. Pulgarin, S. Dukan, The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity, FEMS Microbiol. Lett., 2006, 258, 18–24.

    Article  CAS  PubMed  Google Scholar 

  40. C. Guillard, T.-H. Bui, C. Felix, V. Moules, B. Lina, P. Lejeune, Microbiological disinfection of water and air by photocatalysis, C. R. Chim., 2008, 11, 107–113.

    Article  CAS  PubMed  Google Scholar 

  41. R. N. Sylva, The hydrolysis of iron(iii), Rev. Pure Appl. Chem., 1972, 22, 115–130.

    Google Scholar 

  42. S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 2009, 147, 1–59.

    Article  CAS  Google Scholar 

  43. H. Gallard, J. De Laat, B. Legube, Spectrophotometric study of the formation of iron(iii)-hydroperoxy complexes in homogeneous aqueous solutions, Water Res., 1999, 33, 2929–2936.

    Article  CAS  Google Scholar 

  44. C. Lee, J. Yoon, Determination of quantum yields for the photolysis of Fe(iii)-hydroxo complexes in aqueous solution using a novel kinetic method, Chemosphere, 2004, 57, 1449–1458.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Norberto Benítez or César Pulgarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moncayo-Lasso, A., Mora-Arismendi, L.E., Rengifo-Herrera, J.A. et al. The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light. Photochem Photobiol Sci 11, 821–827 (2012). https://doi.org/10.1039/c2pp05290c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05290c

Navigation