Skip to main content

Advertisement

Log in

Ligand-enabled palladium-catalysed enantioselective synthesis of α-quaternary amino and glycolic acids derivatives

  • Article
  • Published:

From Nature Synthesis

View current issue Submit your manuscript

Abstract

α-Quaternary amino and glycolic acids have found application in many biologically relevant compounds and pharmaceuticals. For example, α-quaternary amino acids can act as modifiers of peptide conformation, compared with natural amino acids. Although there are numerous enantioselective methods for the synthesis of α-quaternary amino and glycolic acids through α-alkylation, α-arylation routes are challenging. Here we report two protocols for the enantioselective synthesis of chiral α-aryl quaternary amino acids and glycolic acids derivatives, respectively, using palladium catalysis with two unique sulfinamide phosphine (Sadphos) ligands. The methods employ two common heterocycles, azlactones and 5H-oxazol-4-ones, as amino acid and glycolic acid precursors and show a broad substrate scope, with high yields and excellent enantioselectivity. Density functional theory calculations of the transition-state structures, studying non-covalent interactions and using natural bond orbital analysis, reveal that C–H···O interactions between the ligand and the substrate play a critical role in the efficient stereocontrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Background and project synopsis.
Fig. 2: Competitive experiments and kinetic study.
Fig. 3: Gram-scale reaction and transformation of products.
Fig. 4: DFT study of transition-state structures for reductive elimination.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2233239 (5ab). These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service, www.ccdc.cam.ac.uk/structures.

References

  1. Vogt, H. & Bräse, S. Recent approaches towards the asymmetric synthesis of α,α-disubstituted α-amino acids. Org. Biomol. Chem. 5, 406–430 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Michaux, J., Niel, G. & Campagne, J.-M. Stereocontrolled routes to β,β′-disubstituted α-amino acids. Chem. Soc. Rev. 38, 2093–2116 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Toniolo, C., Crisma, M., Formaggio, F. & Peggion, C. Control of peptide conformation by the Thorpe–Ingold effect (Cα-tetrasubstitution). Pept. Sci. 60, 396–419 (2001).

    Article  CAS  Google Scholar 

  4. Sjöquist, B., Johnson, H. A. & Borg, S. The influence of acute ethanol on the catecholamine system in man as reflected in cerebrospinal fluid and urine. A new condensation product, 1-carboxysalsolinol. Drug Alcohol Depend. 16, 241–249 (1985).

    Article  PubMed  Google Scholar 

  5. Ma, D. Conformationally constrained analogues of l-glutamate as subtype-selective modulators of metabotropic glutamate receptors. Bioorg. Chem. 27, 20–34 (1999).

    Article  CAS  Google Scholar 

  6. Schoepp, D. D., Jane, D. E. & Monn, J. A. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38, 1431–1476 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Meusel, M. & Gütschow, M. Recent developments in hydantoin chemistry. A review. Org. Prep. Proced. Int. 36, 391–443 (2004).

    Article  CAS  Google Scholar 

  8. Sonowal, H. et al. Aldose reductase inhibitor increases doxorubicin-sensitivity of colon cancer cells and decreases cardiotoxicity. Sci Rep. 7, 3182 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. Pal, R., Kumar, B., Akhtar, M. J. & Chawla, P. A. Voltage gated sodium channel inhibitors as anticonvulsant drugs: a systematic review on recent developments and structure activity relationship studies. Bioorg. Chem. 115, 105230 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Grimm, J. B., Stables, J. P. & Brown, M. L. Design, synthesis, and development of novel caprolactam anticonvulsants. Biorg. Med. Chem. 11, 4133–4141 (2003).

    Article  CAS  Google Scholar 

  11. Kakuda, R., Machida, K., Yaoita, Y., Kikuchi, M. & Kikuchi, M. Studies on the constituents of Gentiana species. II. A new triterpenoid, and (S)-(+)- and (R)-(−)-gentiolactones from Gentiana lutea. Chem. Pharm. Bull. 51, 885–887 (2003).

    Article  CAS  Google Scholar 

  12. Davis, G. C. et al. Asymmetric synthesis and evaluation of a hydroxyphenylamide voltage-gated sodium channel blocker in human prostate cancer xenografts. Biorg. Med. Chem. 20, 2180–2188 (2012).

    Article  CAS  Google Scholar 

  13. Yarker, Y. E., Goa, K. L. & Fitton, A. Oxybutynin. Drugs Aging 6, 243–262 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Tomohara, K., Yoshimura, T., Hyakutake, R., Yang, P. & Kawabata, T. Asymmetric α-arylation of amino acid derivatives by Clayden rearrangement of ester enolates via memory of chirality. J. Am. Chem. Soc. 135, 13294–13297 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Atkinson, R. C., Fernández-Nieto, F., Mas Roselló, J. & Clayden, J. Pseudoephedrine-directed asymmetric α-arylation of α-amino acid derivatives. Angew. Chem. Int. Ed. 54, 8961–8965 (2015).

    Article  CAS  Google Scholar 

  16. Leonard, D. J., Ward, J. W. & Clayden, J. Asymmetric α-arylation of amino acids. Nature 562, 105–109 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Shirakawa, S., Yamamoto, K. & Maruoka, K. Phase-transfer-catalyzed asymmetric SNAr reaction of α-amino acid derivatives with arene chromium complexes. Angew. Chem. Int. Ed. 54, 838–840 (2015).

    Article  CAS  Google Scholar 

  18. Shirakawa, S., Yamamoto, K., Tokuda, T. & Maruoka, K. Phase-transfer-catalyzed asymmetric α-arylation of α-amino acid derivatives. Asian J. Org. Chem. 3, 433–436 (2014).

    Article  CAS  Google Scholar 

  19. Ye, C.-X., Shen, X., Chen, S. & Meggers, E. Stereocontrolled 1,3-nitrogen migration to access chiral α-amino acids. Nat. Chem. 14, 566–573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tian, S.-K. & Deng, L. A highly enantioselective chiral Lewis base-catalyzed asymmetric cyanation of ketones. J. Am. Chem. Soc. 123, 6195–6196 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Yabu, K. et al. Switching enantiofacial selectivities using one chiral source: catalytic enantioselective synthesis of the key intermediate for (20S)-camptothecin family by (S)-selective cyanosilylation of ketones. J. Am. Chem. Soc. 123, 9908–9909 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Deng, H., Isler, M. P., Snapper, M. L. & Hoveyda, A. H. Aluminum-catalyzed asymmetric addition of TMSCN to aromatic and aliphatic ketones promoted by an easily accessible and recyclable peptide ligand. Angew. Chem. Int. Ed. 41, 1009–1012 (2002).

    Article  CAS  Google Scholar 

  23. Tokuda, O., Kano, T., Gao, W.-G., Ikemoto, T. & Maruoka, K. A practical synthesis of (S)-2-cyclohexyl-2-phenylglycolic acid via organocatalytic asymmetric construction of a tetrasubstituted carbon center. Org. Lett. 7, 5103–5105 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, J. et al. Asymmetric direct aldol reaction of functionalized ketones catalyzed by amine organocatalysts based on bispidine. J. Am. Chem. Soc. 130, 5654–5655 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Roy, S., Sharma, A., Chattopadhyay, N. & Chattopadhyay, S. An efficient asymmetric synthesis of (S)-2-cyclohexyl-2-phenylglycolic acid, the acid segment of oxybutynin. Tetrahedron Lett. 47, 7067–7069 (2006).

    Article  CAS  Google Scholar 

  26. Wang, F., Liu, X., Zhang, Y., Lin, L. & Feng, X. Highly enantioselective synthesis of tertiary alcohols: C2-symmetric N,N′-dioxide–Sc(III) complex promoted direct aldol reaction of α-ketoesters and diazoacetate esters. Chem. Commun., 7297−7299, (2009).

  27. Shaw, S. A., Aleman, P. & Vedejs, E. Development of chiral nucleophilic pyridine catalysts: applications in asymmetric quaternary carbon synthesis. J. Am. Chem. Soc. 125, 13368–13369 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Fisk, J. S., Mosey, R. A. & Tepe, J. J. The diverse chemistry of oxazol-5-(4H)-ones. Chem. Soc. Rev. 36, 1432–1440 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Marra, I. F. S., de Castro, P. P., Carpanez, A. G. & Amarante, G. W. Azlactone reaction developments. Chem. Eur. J. 22, 10294–10318 (2016).

    Article  Google Scholar 

  30. Marra, I. F. S., de Castro, P. P. & Amarante, G. W. Recent advances in azlactone transformations. Eur. J. Org. Chem. 2019, 5830–5855 (2019).

    Article  CAS  Google Scholar 

  31. Jain, A. & Rana, N. K. Review on asymmetric catalysis employing 5H-oxazol-4-ones as α-hydroxy carboxylic acid surrogates. Adv. Synth. Catal. 363, 3879–3912 (2021).

    Article  CAS  Google Scholar 

  32. Bellina, F. & Rossi, R. Transition metal-catalyzed direct arylation of substrates with activated sp3-hybridized C–H bonds and some of their synthetic equivalents with aryl halides and pseudohalides. Chem. Rev. 110, 1082–1146 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Johansson, C. C. C. & Colacot, T. J. Metal-catalyzed α-arylation of carbonyl and related molecules: novel trends in C–C bond formation by C–H bond functionalization. Angew. Chem. Int. Ed. 49, 676–707 (2010).

    Article  CAS  Google Scholar 

  34. Hao, Y.-J., Hu, X.-S., Zhou, Y., Zhou, J. & Yu, J.-S. Catalytic enantioselective α-arylation of carbonyl enolates and related compounds. ACS Catal. 10, 955–993 (2020).

    Article  CAS  Google Scholar 

  35. Satoh, T., Kawamura, Y., Miura, M. & Nomura, M. Palladium-catalyzed regioselective mono- and diarylation reactions of 2-phenylphenols and naphthols with aryl halides. Angew. Chem. Int. Ed. Engl. 36, 1740–1742 (1997).

    Article  CAS  Google Scholar 

  36. Hamann, B. C. & Hartwig, J. F. Palladium-catalyzed direct α-arylation of ketones. Rate acceleration by sterically hindered chelating ligands and reductive elimination from a transition metal enolate complex. J. Am. Chem. Soc. 119, 12382–12383 (1997).

    Article  CAS  Google Scholar 

  37. Palucki, M. & Buchwald, S. L. Palladium-catalyzed α-arylation of ketones. J. Am. Chem. Soc. 119, 11108–11109 (1997).

    Article  CAS  Google Scholar 

  38. Liu, X. & Hartwig, J. F. Palladium-catalyzed α-arylation of azlactones to form quaternary amino acid derivatives. Org. Lett. 5, 1915–1918 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Chai, Z., Wang, B., Chen, J.-N. & Yang, G. Arylation of azlactones using diaryliodonium bromides and silver carbonate: facile access to α-tetrasubstituted amino acid derivatives. Adv. Synth. Catal. 356, 2714–2718 (2014).

    Article  CAS  Google Scholar 

  40. Uraguchi, D., Ueki, Y. & Ooi, T. Chiral organic ion pair catalysts assembled through a hydrogen-bonding network. Science 326, 120–123 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Pan, Z. et al. Palladium/TY-Phos-catalyzed asymmetric intermolecular α-arylation of aldehydes with aryl bromides. Angew. Chem. Int. Ed. 60, 18542–18546 (2021).

    Article  CAS  Google Scholar 

  42. Li, S., Chen, Q., Yang, J. & Zhang, J. Palladium-catalyzed enantioselective γ-arylation of β,γ-unsaturated butenolides. Angew. Chem. Int. Ed. 61, e202202046 (2022).

    Article  CAS  ADS  Google Scholar 

  43. Xu, B. et al. Palladium/Xu-Phos-catalyzed enantioselective cascade Heck/remote C(sp2)–H alkylation reaction. Chem 8, 836–849 (2022).

    Article  CAS  Google Scholar 

  44. Netz, I., Kucukdisli, M. & Opatz, T. Enantioselective synthesis of α-quaternary amino acids by alkylation of deprotonated α-aminonitriles. J. Org. Chem. 80, 6864–6869 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Huang, Z. et al. Arene CH–O hydrogen bonding: a stereocontrolling tool in palladium-catalyzed arylation and vinylation of ketones. Angew. Chem. Int. Ed. 52, 4906–4911 (2013).

    Article  CAS  Google Scholar 

  46. Pinheiro, D. L. J., Nielsen, D. U., Amarante, G. W. & Skrydstrup, T. Pd-catalyzed carbonylative Α-arylation of azlactones: a formal four-component coupling route to α, α-disubstituted amino acids. J. Catal. 364, 366–370 (2018).

    Article  CAS  Google Scholar 

  47. Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  49. Wiberg, K. B. Application of the Pople–Santry–Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24, 1083–1096 (1968).

    Article  CAS  Google Scholar 

  50. Huang, Z. et al. Weak arene C−H⋅⋅⋅O hydrogen bonding in palladium-catalyzed arylation and vinylation of lactones. Angew. Chem. Int. Ed. 52, 5807–5812 (2013).

    Article  CAS  Google Scholar 

  51. Yang, J. & Zhou, J. A general method for asymmetric arylation and vinylation of silyl ketene acetals. Org. Chem. Front. 1, 365–367 (2014).

    Article  CAS  Google Scholar 

  52. Kalkman, E. D. & Hartwig, J. F. Direct observation of diastereomeric α-C-bound enolates during enantioselective α-arylations: synthesis, characterization, and reactivity of arylpalladium fluorooxindole complexes. J. Am. Chem. Soc. 143, 11741–11750 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding support from the National Key R&D Program of China (2021YFF0701600, J.Y. and J.Z.), NSFC (21901043, J.Y.; 21921003, J.Z.; 22031004, J.Z.), STCSM (21ZR1445900, J.Y.) and Shanghai Municipal Education Commission (20212308, J.Z.).

Author information

Authors and Affiliations

Authors

Contributions

J.Y. conceived the project and analysed the data. J.Y. and J.Z wrote the manuscript. S.Q. performed most of the experiments. W.Y., Y.H. and L.P. contributed to the synthesis of ligands and substrate. J.Y. did the DFT calculations. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Junfeng Yang or Junliang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Giovanni Amarante and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Discussion and Tables 1–9.

Supplementary Data 1

Crystallographic Data for 5ab, CCDC 2233239.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, S., Ye, W., Hua, Y. et al. Ligand-enabled palladium-catalysed enantioselective synthesis of α-quaternary amino and glycolic acids derivatives. Nat. Synth 3, 357–367 (2024). https://doi.org/10.1038/s44160-023-00448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00448-7

  • Springer Nature Limited

This article is cited by

Navigation