Skip to main content
Log in

A modular flow platform for sulfur(VI) fluoride exchange ligation of small molecules, peptides and proteins

  • Article
  • Published:

From Nature Synthesis

View current issue Submit your manuscript

A Publisher Correction to this article was published on 31 January 2024

This article has been updated

Abstract

Sulfur(VI) fluoride exchange click chemistry is a formidable tool to rapidly and effectively link chemical structures. Despite advances in the field in recent years, the installation of the sulfonyl fluoride handle still requires the use of purpose-designed, expensive and non-atom-economic reagents. The use of the SO2F2 for sulfonyl fluoride synthesis has been thwarted by the difficulties associated with the manipulation and dosage of this toxic gas, and by its apparent low reactivity with amino functionalities. Here we report a modular flow platform that can generate on demand, and efficiently dose, gaseous SO2F2. The use of flow technologies allows many lingering limitations of this transformation to be overcome, resulting in reduced reaction times, efficient reactivity and broad substrate scope. The effectiveness of the process was demonstrated by the successful synthesis of a diverse set of fluorosulfates and sulfamoyl fluorides, including those derived from biorelevant compounds, peptides and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: SuFEx click chemistry.
Fig. 2: A three-step protocol that combines the SO2F2 generator module, the SuFEx module and the derivatization module.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information.

Change history

References

  1. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  2. Moorhouse, A. D., Homer, J. A. & Moses, J. E. The certainty of a few good reactions. Chem 9, 2063–2077 (2023).

  3. Kitamura, S. et al. Sulfur(VI) fluoride exchange (SuFEx)-enabled high-throughput medicinal chemistry. J. Am. Chem. Soc. 142, 10899–10904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, Z. et al. SuFEx click chemistry enabled late-stage drug functionalization. J. Am. Chem. Soc. 140, 2919–2925 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zheng, Q. et al. SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc. Natl Acad. Sci. USA 116, 18808–18814 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Jones, L. H. Emerging utility of fluorosulfate chemical probes. ACS Med. Chem. Lett. 9, 584–586 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McCann, H. M. et al. Covalent immune proximity-induction strategy using SuFEx-engineered bifunctional viral peptides. ACS Chem. Biol. 17, 1269–1281 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Gilbert, K. E. et al. Profiling sulfur(VI) fluorides as reactive functionalities for chemical biology tools and expansion of the ligandable proteome. ACS Chem. Biol. 18, 285–295 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, S. et al. SuFExable polymers with helical structures derived from thionyl tetrafluoride. Nat. Chem. 13, 858–867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dong, J., Sharpless, K. B., Kwisnek, L., Oakdale, J. S. & Fokin, V. V. SuFEx-based synthesis of polysulfates. Angew. Chem. Int. Ed. 53, 9466–9470 (2014).

    Article  CAS  Google Scholar 

  11. Durie, K. et al. Multifunctional surface manipulation using orthogonal click chemistry. Langmuir. 32, 6600–6605 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Randall, J. D. et al. Modification of carbon fibre surfaces by sulfur–fluoride exchange click chemistry. ChemPhysChem. 19, 3176–3181 (2018).

    Article  CAS  Google Scholar 

  13. Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014).

    Article  CAS  Google Scholar 

  14. Falardeau, E. R. & DesMarteau, D. D. Synthesis of pentafluorophenoxy derivatives of sulfur(IV) and -(VI) fluorides. J. Chem. Eng. Data. 21, 386–387 (1976).

    Article  CAS  Google Scholar 

  15. Ciuffarin, E., Senatore, L. & Isola, M. Nucleophilic substitution at four-co-ordinate sulphur. Mobility of the leaving group. J. Chem. Soc., Perkin Trans. 2, 468–471 (1972).

    Article  Google Scholar 

  16. Barrow, A. S. et al. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48, 4731–4758 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Gehringer, M. & Laufer, S. A. Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J. Med. Chem. 62, 5673–5724 (2018).

    Article  Google Scholar 

  18. Zeng, D., Deng, W.-P. & Jiang, X. Advances in the construction of diverse SuFEx Linkers. Natl. Sci. Rev. 29, nwad123 (2023).

    Article  ADS  Google Scholar 

  19. Schneir, A., Clark, R. F., Kene, M. & Betten, D. Systemic fluoride poisoning and death from inhalational exposure to sulfuryl fluoride. Clin. Toxicol. 46, 850–854 (2008).

    Article  CAS  Google Scholar 

  20. Veryser, C., Demaerel, J., Bieliu̅nas, Vidmantas, Gilles, P. & De Borggraeve, W. M. Ex situ generation of sulfuryl fluoride for the synthesis of aryl fluorosulfates. Org. Lett. 19, 5244–5247 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, H. et al. Introduction of a crystalline, shelf-stable reagent for the synthesis of sulfur(VI) fluorides. Org. Lett. 20, 812–815 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Guo, T. et al. A new portal to SuFEx click chemistry: a stable fluorosulfuryl imidazolium salt emerging as an “F−SO2+” donor of unprecedented reactivity, selectivity, and scope. Angew. Chem. Int. Ed. 57, 2605–2610 (2018).

    Article  CAS  ADS  Google Scholar 

  23. Kiang, T. & Zare, R. N. Stepwise bond dissociation energies for the removal of fluorine from thionyl fluoride and sulphuryl fluoride. Chem. Commun. 1228 (1980).

  24. Plutschack, M. B., Pieber, B., Gilmore, K. & Seeberger, P. H. The hitchhiker’s guide to flow chemistry. Chem. Rev. 117, 11796–11893 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Dallinger, D., Gutmann, B. & Kappe, C. O. The concept of chemical generators: on-site on-demand production of hazardous reagents in continuous flow. Acc. Chem. Res. 53, 1330–1341 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Capaldo, L., Wen, Z. & Noël, T. A field guide to flow chemistry for synthetic organic chemists. Chem. Sci. 14, 4230–4247 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mallia, C. J. & Baxendale, I. R. The use of gases in flow synthesis. Org. Process Res. Dev. 20, 327–360 (2016).

    Article  CAS  Google Scholar 

  28. Casnati, A., Gemoets, H. P., Motti, E., DellaCa’, N. & Noël, T. Homogeneous and gas–liquid Catellani‐type reaction enabled by continuous‐flow chemistry. Chem. Eur. J. 24, 14079–14083 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Straathof, N. J., Su, Y., Hessel, V. & Noël, T. Accelerated gas–liquid visible light photoredox catalysis with continuous-flow photochemical microreactors. Nat. Protoc. 11, 10–21 (2015).

    Article  PubMed  Google Scholar 

  30. Dong, Z., Wen, Z., Zhao, F., Kuhn, S. & Noël, T. Scale-up of micro- and milli-reactors: an overview of strategies, design principles and applications. Chem. Eng. Sci. X. 10, 100097 (2021).

    CAS  Google Scholar 

  31. Thirumurugan, P., Matosiuk, D. & Jozwiak, K. Click chemistry for drug development and diverse chemical–biology applications. Chem. Rev. 113, 4905–4979 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, N. et al. Genetically encoding fluorosulfate-l-tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo. J. Am. Chem. Soc. 140, 4995–4999 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boutureira, O. & Bernardes, G. J. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the European Union H2020 research and innovation program for an ERC CoG grant for T.N. (FlowHAT, number 101044355) and a Marie S. Curie Grant fellowship for D.M. (ELECTRORGANO, number 101022144), the Spanish Government-MCIN, the national agency of investigation-AEI/10.13039/501100011033, and the European Regional Development Fund-ERDF for project PID2020-120584RB-I00 to O.B. and and FPU Fellowship (FPU19/01969 and EST22/00303) to M.B.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and D.M. conceived the project. M.B., D.M. and J. S. performed and analysed the experiments. O.B. and T.N.G. supervised the ligation of peptides and proteins. Z.Z., A.Y.V., A.F.G.G. and T.N.G. performed the analyses of the ligation of peptides and proteins. T.N. directed the project. M.B., D.M. and T.N. have written the manuscript with contributions from all the authors.

Corresponding author

Correspondence to Timothy Noël.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Nicholas Ball, Jiajia Dong and Christopher Hone for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–76, Tables 1–22, Discussion, NMR spectra and Schemes 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernús, M., Mazzarella, D., Stanić, J. et al. A modular flow platform for sulfur(VI) fluoride exchange ligation of small molecules, peptides and proteins. Nat. Synth 3, 185–191 (2024). https://doi.org/10.1038/s44160-023-00441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00441-0

  • Springer Nature Limited

This article is cited by

Navigation