Skip to main content
Log in

Organo–metal cooperative catalysis for C(sp3)–H alkylation polymerization

  • Article
  • Published:

From Nature Synthesis

View current issue Submit your manuscript

Abstract

The reversible deactivation process is the essence of a variety of modern polymerization technologies, which have found wide applications in both academia and industry. However, this process seldom employs hydrogen atoms as the chain-end groups due to the lack of effective control in carbon–hydrogen functionalization polymerization (CHFP). Cooperative catalysis, especially the interplay between an organocatalyst and a metal complex, may offer a solution to the lack of control in CHFP. Here, we report a proof of concept in ring-opening polymerization of cyclopropanes using commercially available MgBr2 and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) for a C(sp3)–H initiator system. This approach imparts cooperative activation towards chain-end hydrogen atoms and monomers, as well as reversible chain-end deprotonation and protonation to enable C(sp3)–H alkylation polymerization. This polymerization allows multiple-site chain growth and exhibits temperature dependence, thus providing unprecedented access to sequence-controlled copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: C–H functionalization polymerization.
Fig. 2: Scope of initiators and cyclopropane monomers.
Fig. 3: Kinetics and the probe of polymer chain-end groups.
Fig. 4: Mechanistic study.
Fig. 5: DFT calculations.
Fig. 6: Proposed polymerization mechanism.
Fig. 7: Poly(cyclopropanes) with advanced microstructures.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information.

References

  1. Muller, A. H. E & Matyjaszewski, K. (eds) Controlled and Living Polymerizations: From Mechanisms to Applications (Wiley, 2009).

  2. Hadjichristidis, N., Pitsikalis, M., Pispas, S. & Iatrou, H. Polymers with complex architecture by living anionic polymerization. Chem. Rev. 101, 3747–3792 (2001).

    CAS  PubMed  Google Scholar 

  3. Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).

    CAS  PubMed  Google Scholar 

  4. Kamigaito, M., Ando, T. & Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 101, 3689–3745 (2001).

    CAS  PubMed  Google Scholar 

  5. Keddie, D. J., Moad, G., Rizzardo, E. & Thang, S. H. RAFT agent design and synthesis. Macromolecules 45, 5321–5342 (2012).

    CAS  Google Scholar 

  6. Aoshima, S. & Kanaoka, S. A Renaissance in living cationic polymerization. Chem. Rev. 109, 5245–5287 (2009).

    CAS  PubMed  Google Scholar 

  7. Bielawski, C. W. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).

    CAS  Google Scholar 

  8. Corrigan, N. et al. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 111, 101311 (2020).

    CAS  Google Scholar 

  9. Chong, Y. K., Moad, G., Rizzardo, E. & Thang, S. H. Thiocarbonylthio end group removal from RAFT-synthesized polymers by radical-induced reduction. Macromolecules 40, 4446–4455 (2007).

    CAS  Google Scholar 

  10. Willcock, H. & O’Reilly, R. K. End group removal and modification of RAFT polymers. Polym. Chem. 1, 149–157 (2010).

    CAS  Google Scholar 

  11. Coessens, V. & Matyjaszewski, K. Dehalogenation of polymers prepared by atom transfer radical polymerization. Macromol. Rapid Commun. 20, 66–70 (1999).

    CAS  Google Scholar 

  12. Mattson, K. M. et al. Metal-free removal of polymer chain ends using light. Macromolecules 49, 8162–8166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Carmean, R. N., Figg, C. A., Scheutz, G. M., Kubo, T. & Sumerlin, B. S. Catalyst-free photoinduced end-group removal of thiocarbonylthio functionality. ACS Macro Lett. 6, 185–189 (2017).

    CAS  PubMed  Google Scholar 

  14. Li, N., Yang, S., Huang, Z. & Pan, X. Radical reduction of polymer chain-end functionality by stoichiometric N-heterocyclic carbene boranes. Macromolecules 54, 6000–6005 (2021).

    CAS  Google Scholar 

  15. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    CAS  PubMed  Google Scholar 

  16. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    CAS  Google Scholar 

  17. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    CAS  PubMed  Google Scholar 

  18. Chu, J. C. K. & Rovis, T. Complementary strategies for directed C(sp3)–H functionalization: a comparison of transition-metal-catalyzed activation, hydrogen atom transfer and carbene/nitrene transfer. Angew. Chem. Int. Ed. 57, 62–101 (2018).

    CAS  Google Scholar 

  19. Williamson, J. B., Lewis, S. E., Johnson, R. R. III, Manning, M. & Leibfarth, F. A. C–H functionalization of commodity polymers. Angew. Chem. Int. Ed. 58, 8654–8668 (2019).

    CAS  Google Scholar 

  20. Okamoto, K., Zhang, J., Housekeeper, J. B., Marder, S. R. & Luscombe, C. K. C–H arylation reaction: atom efficient and greener syntheses of π-conjugated small molecules and macromolecules for organic electronic materials. Macromolecules 46, 8059–8078 (2013).

    CAS  Google Scholar 

  21. Pouliot, J.-R., Grenier, F., Blaskovits, J. T., Beaupré, S. & Leclerc, M. Direct (hetero) arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 116, 14225–14274 (2016).

    CAS  PubMed  Google Scholar 

  22. Kaneko, H., Nagae, H., Tsurugi, H. & Mashima, K. End-functionalized polymerization of 2-vinylpyridine through initial C–H bond activation of N-heteroaromatics and internal alkynes by yttrium ene-diamido complexes. J. Am. Chem. Soc. 133, 19626–19629 (2011).

    CAS  PubMed  Google Scholar 

  23. Yang, W. & Rånby, B. Radical living graft polymerization on the surface of polymeric materials. Macromolecules 29, 3308–3310 (1996).

    CAS  Google Scholar 

  24. Yamamoto, A., Nishiura, M., Oyamada, J., Koshino, H. & Hou, Z. Scandium-catalyzed syndiospecific chain-transfer polymerization of styrene using anisoles as a chain transfer agent. Macromolecules 49, 2458–2466 (2016).

    CAS  Google Scholar 

  25. Yang, P. & Yang, W. Surface chemoselective phototransformation of C–H bonds on organic polymeric materials and related high-tech applications. Chem. Rev. 113, 5547–5594 (2013).

    CAS  PubMed  Google Scholar 

  26. Stache, E. E., Kottisch, V. & Fors, B. P. Photocontrolled radical polymerization from hydridic C–H bonds. J. Am. Chem. Soc. 142, 4581–4585 (2020).

    CAS  PubMed  Google Scholar 

  27. de Meijere, A. Bonding properties of cyclopropane and their chemical consequences. Angew. Chem. Int. Ed. 18, 809–826 (1979).

    Google Scholar 

  28. Penelle, J. & Xie, T. Ring-opening polymerization of diisopropyl cyclopropane-1,1-dicarboxylate under living anionic conditions: a kinetic and mechanistic study. Macromolecules 33, 4667–4672 (2000).

    CAS  Google Scholar 

  29. Kagumba, L. C. & Penelle, J. Anionic ring-opening polymerization of alkyl 1-cyanocyclopropanecarboxylates. Macromolecules 38, 4588–4594 (2005).

    CAS  Google Scholar 

  30. Illy, N., Boileau, S., Buchmann, W., Penelle, J. & Barbier, V. Control of end groups in anionic polymerizations using phosphazene bases and protic precursors as initiating system (XH-ButP4approach): application to the ring-opening polymerization of cyclopropane-1,1-dicarboxylates. Macromolecules 43, 8782–8789 (2010).

    CAS  Google Scholar 

  31. Hayakawa, K., Matsuoka, S.-I. & Suzuki, M. Ring-opening polymerization of donor-acceptor cyclopropanes catalyzed by Lewis acids. Polym. Chem. 8, 3841–3847 (2017).

    CAS  Google Scholar 

  32. Emmerich, A., Daniliuc, C. G. & Studer, A. Synthesis of polymers bearing a chiral backbone via stereospecific ionic ring-opening polymerization of chiral donor-acceptor cyclopropanes. Macromol. Rapid Commun. 42, 2100030 (2021).

    CAS  Google Scholar 

  33. Moszner, N. & Salz, U. New developments of polymeric dental composites. Prog. Polym. Sci. 26, 535–576 (2001).

    CAS  Google Scholar 

  34. Chen, G.-S. et al. Palladium-catalyzed allylic alkylation of tert-butyl(diphenylmethylene)-glycinate with simple allyl esters under chiral phase transfer conditions. Tetrahedron Asymmetry 12, 1567–1571 (2001).

    CAS  Google Scholar 

  35. Chen, D.-F., Han, Z.-Y., Zhou, X.-L. & Gong, L.-Z. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept and beyond. Acc. Chem. Res. 47, 2365–2377 (2014).

    CAS  PubMed  Google Scholar 

  36. Gong, L.-Z. (ed) Asymmetric Organo-Metal Catalysis: Concepts, Principles and Applications (Wiley, 2021).

  37. Chen, D.-F. & Gong, L.-Z. Organo/transition-metal combined catalysis rejuvenates both in asymmetric synthesis. J. Am. Chem. Soc. 144, 2415–2437 (2022).

    CAS  Google Scholar 

  38. Zhang, Y., Miyake, G. M. & Chen, E. Y.-X. Alane-based classical and frustrated Lewis pairs in polymer synthesis: rapid polymerization of MMA and naturally renewable methylene butyrolactones to high molecular weight polymers. Angew. Chem. Int. Ed. 49, 10158–10162 (2010).

    CAS  Google Scholar 

  39. Jia, Y.-B. et al. Mechanistic aspects of initiation and deactivation in N-heterocyclic olefin mediated polymerization of acrylates with alane as activator. Macromolecules 47, 1966–1972 (2014).

    CAS  Google Scholar 

  40. Knaus, M. G. M., Giuman, M. M., Pothig, A. & Rieger, B. End of frustration: catalytic precision polymerization with highly interacting Lewis pairs. J. Am. Chem. Soc. 138, 7776–7781 (2016).

    CAS  Google Scholar 

  41. Bai, Y., He, J. & Zhang, Y. Ultra-high-molecular-weight polymers produced by the immortal phosphine-based catalyst system. Angew. Chem. Int. Ed. 57, 17230–17234 (2018).

    CAS  Google Scholar 

  42. Hong, M., Chen, J. & Chen, E. Y.-X. Polymerization of polar monomers mediated by main-group Lewis acid-base pairs. Chem. Rev. 118, 10551–10616 (2018).

    CAS  PubMed  Google Scholar 

  43. Zhao, W., He, J. & Zhang, Y. Lewis pairs polymerization of polar vinyl monomers. Sci. Bull. 64, 1830–1840 (2019).

    CAS  Google Scholar 

  44. McGraw, M. L. & Chen, E. Y.-X. Lewis pair polymerization: perspective on a ten-year journey. Macromolecules 53, 6102–6122 (2020).

    CAS  Google Scholar 

  45. Piedra-Arroni, E. et al. A dual organic/organometallic approach for catalytic ring-opening polymerization. Chem. Commun. 47, 9828–9830 (2011).

    CAS  Google Scholar 

  46. Piedra-Arroni, E., Amgoune, A. & Bourissou, D. Dual catalysis: new approaches for the polymerization of lactones and polar olefins. Dalton Trans. 42, 9024–9029 (2013).

    CAS  PubMed  Google Scholar 

  47. Piedra-Arroni, E., Ladavière, C., Amgoune, A. & Bourissou, D. Ring-opening polymerization with Zn(C6F5)2-based Lewis pairs: original and efficient approach to cyclic polyesters. J. Am. Chem. Soc. 135, 13306–13309 (2013).

    CAS  PubMed  Google Scholar 

  48. Naumann, S., Scholten, P. B. V., Wilson, J. A. & Dove, A. P. Dual catalysis for selective ring-opening polymerization of lactones: evolution toward simplicity. J. Am. Chem. Soc. 137, 14439–14445 (2015).

    CAS  PubMed  Google Scholar 

  49. Naumann, S. & Wang, D. Dual catalysis based on N-heterocyclic olefins for the copolymerization of lactones: high performance and tunable selectivity. Macromolecules 49, 8869–8878 (2016).

    CAS  Google Scholar 

  50. Lohmeijer, B. G. G. et al. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 39, 8574–8583 (2006).

    CAS  Google Scholar 

  51. Pappuru, S. & Chakraborty, D. Progress in metal-free cooperative catalysis for the ring-opening copolymerization of cyclic anhydrides and epoxides. Eur. Polym. J. 121, 109276 (2019).

    CAS  Google Scholar 

  52. Basterretxea, A., Jehanno, C., Mecerreyes, D. & Sardon, H. Dual organocatalysts based on ionic mixtures of acids and bases: a step toward high temperature polymerizations. ACS Macro Lett. 8, 1055–1062 (2019).

    CAS  PubMed  Google Scholar 

  53. Liu, S. et al. Biased Lewis pairs: a general catalytic approach to ether-ester block copolymers with unlimited ordering of sequences. Angew. Chem. Int. Ed. 58, 15478–15487 (2019).

    CAS  Google Scholar 

  54. Zhang, J., Wang, L., Liu, S., Kang, X. & Li, Z. A Lewis pair as organocatalyst for one-pot synthesis of block copolymers from a mixture of epoxide, anhydride and CO2. Macromolecules 54, 763–772 (2021).

    CAS  Google Scholar 

  55. Reetz, M. T., Knauf, T., Minet, U. & Bingel, C. Metal-free carbanion salts as initiators for the anionic polymerization of acrylic and methacrylic acid esters. Angew. Chem. Int. Ed. 27, 1373–1374 (1988).

    Google Scholar 

  56. Bandermann, F. et al. Functionalized initiators for group transfer and metal-free anionic polymerization for the synthesis of macromonomers: overview and new results. Macromol. Chem. Phys. 196, 2335–2347 (1995).

    CAS  Google Scholar 

  57. Sivaram, S. et al. Tailoring carbanion structures for controlled anionic polymerization of acrylonitrile. Macromolecules 24, 1697–1698 (1991).

    CAS  Google Scholar 

  58. Baskaran, D., Chakrapani, S. & Sivaram, S. Anionic polymerization of alkyl (meth)acrylates using metal-free initiators: effect of ion pairing on initiation equilibria. Macromolecules 32, 2865–2871 (1999).

    CAS  Google Scholar 

  59. Chen, D.-F., Boyle, B. M., McCarthy, B. G., Lim, C.-H. & Miyake, G. M. Controlling polymer composition in organocatalyzed photoredox radical ring-opening polymerization of vinylcyclopropanes. J. Am. Chem. Soc. 141, 13268–13277 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lutz, J.-F. (ed) Sequence-Controlled Polymers (Wiley, 2017).

  61. Deacy, A. C., Gregory, G. L., Sulley, G. S., Chen, T. T. D. & Williams, C. K. Sequence control from mixtures: switchable polymerization catalysis and future materials applications. J. Am. Chem. Soc. 143, 10021–10040 (2021).

    CAS  PubMed  Google Scholar 

  62. Hu, C., Pang, X. & Chen, X. Self-switchable polymerization: a smart approach to sequence-controlled degradable copolymers. Macromolecules 55, 1879–1893 (2022).

    CAS  Google Scholar 

  63. McGraw, M. L., Clarke, R. W. & Chen, E. Y.-X. Compounded sequence control in polymerization of one-pot mixtures of highly reactive acrylates by differentiating Lewis pairs. J. Am. Chem. Soc. 142, 5969–5973 (2020).

    Google Scholar 

  64. Li, C., Zhao, W., He, J., Zhang, Y. & Zhang, W. Single-step expeditious synthesis of diblock copolymers with different morphologies by Lewis pair polymerization-induced self-assembly. Angew. Chem. Int. Ed. 61, e202202448 (2022).

    CAS  Google Scholar 

  65. Wan, Y., He, J. & Zhang, Y. An arbitrarily regulated monomer sequence in multi-block copolymer synthesis by frustrated Lewis pairs. Angew. Chem. Int. Ed. 62, e202218248 (2023).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 22101273 to D.-F.C. and 21831007 to L.-Z.G.), the Anhui Provincial Natural Science Foundation (no. 2108085MB30 to D.-F.C.) and startup funding from the University of Science and Technology of China (D.-F.C.).

Author information

Authors and Affiliations

Authors

Contributions

D.-F.C. and L.-Z.G. conceived the idea of the project. Y.-Y.L. and T.X. synthesized the monomers. Y.-Y.L. performed the polymerizations and data analysis. L.Z. and S.-Q.Z. performed the DFT calculations. D.-F.C. and L.-Z.G. directed the investigations and co-wrote the manuscript.

Corresponding authors

Correspondence to Dian-Feng Chen or Liu-Zhu Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Yves Gnanou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental Details, Figs. 1–74 and Tables 1–13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YY., Xie, T., Zhu, L. et al. Organo–metal cooperative catalysis for C(sp3)–H alkylation polymerization. Nat. Synth 2, 1232–1242 (2023). https://doi.org/10.1038/s44160-023-00389-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00389-1

  • Springer Nature Limited

Navigation