Skip to main content
Log in

Emerging principles in functional representations of touch

  • Review Article
  • Published:

From Nature Reviews Psychology

View current issue Sign up to alerts

Abstract

The somatosensory system is fundamental to the formation and maintenance of coherent mental representations of the human body. Traditional concepts of somatosensation have been shaped by the principles of somatotopic and hierarchical organization of the primary somatosensory cortex and the motor cortex. However, emerging research has shown that perceptual and neural representations of touch are not fully captured by these principles. In this Review, we critically discuss how newer empirical research has expanded our understanding of touch and body representations. We first consider the role of higher-level categorical information about the body and its parts and the standard configuration of the body. We then discuss empirical evidence showing that functional representations of touch can complement and integrate across topographic organization. Finally, we review how the processing of touch is influenced by the source of the touch (another person or an object), and how the identity of the toucher shapes responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Cortical representations of touch.
Fig. 2: Categorical representations.
Fig. 3: Influence of typical postures.
Fig. 4: Example of the pattern of tactile mislocalizations across hands and feet.
Fig. 5: Source of touch.

Similar content being viewed by others

References

  1. Matyas, F. et al. Motor control by sensory cortex. Science. 330, 1240–1243 (2010).

    PubMed  Google Scholar 

  2. Cole, J. Pride And A Daily Marathon (MIT Press, 1995).

  3. Iwamura, Y., Tanaka, M., Sakamoto, M. & Hikosaka, O. Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey’s postcentral gyrus. Exp. Brain Res. 92, 360–368 (1993).

    PubMed  Google Scholar 

  4. Iwamura, Y. Hierarchical somatosensory processing. Curr. Opin. Neurobiol. 8, 522–528 (1998).

    PubMed  Google Scholar 

  5. Gardner, E. P. Somatosensory cortical mechanisms of feature detection in tactile and kinesthetic discrimination. Can. J. Physiol. Pharmacol. 66, 439–454 (1988).

    PubMed  Google Scholar 

  6. Penfield, W. & Rasmussen, T. The Cerebral Cortex Of Man; A Clinical Study Of Localization Of Function (Macmillan, 1950).

  7. Nelson, A. J. & Chen, R. Digit somatotopy within cortical areas of the postcentral gyrus in humans. Cereb. Cortex 18, 2341–2351 (2008).

    PubMed  Google Scholar 

  8. Martuzzi, R., van der Zwaag, W., Farthouat, J., Gruetter, R. & Blanke, O. Human finger somatotopy in areas 3b, 1, and 2: a 7T fMRI study using a natural stimulus. Hum. Brain Mapp. 35, 213–226 (2014).

    PubMed  Google Scholar 

  9. Roux, F., Djidjeli, I. & Durand, J.-B. Functional architecture of the somatosensory homunculus detected by electrostimulation. J. Physiol. 596, 941–956 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Powell, T. P. & Mountcastle, V. B. Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp. 105, 133–162 (1959).

    PubMed  Google Scholar 

  11. Roux, F., Niare, M., Charni, S., Giussani, C. & Durand, J. Functional architecture of the motor homunculus detected by electrostimulation. J. Physiol. 598, 5487–5504 (2020).

    PubMed  Google Scholar 

  12. Hlustík, P. et al. Somatotopy in human primary motor and somatosensory hand representations revisited. Cereb. Cortex 11, 312–321 (2001).

    PubMed  Google Scholar 

  13. Catani, M. et al. Short frontal lobe connections of the human brain. Cortex 48, 273–291 (2012).

    PubMed  Google Scholar 

  14. Kumar, N., Manning, T. F. & Ostry, D. J. Somatosensory cortex participates in the consolidation of human motor memory. PLoS Biol. 17, e3000469 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. Mao, T. et al. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72, 111–123 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Stepniewska, I., Preuss, T. M. & Kaas, J. H. Architectonics, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys. J. Comp. Neurol. 330, 238–271 (1993).

    PubMed  Google Scholar 

  17. Ejaz, N., Hamada, M. & Diedrichsen, J. Hand use predicts the structure of representations in sensorimotor cortex. Nat. Neurosci. 18, 1034–1040 (2015).

    PubMed  Google Scholar 

  18. Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. Functional organization of human sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. Muret, D., Root, V., Kieliba, P., Clode, D. & Makin, T. R. Beyond body maps: information content of specific body parts is distributed across the somatosensory homunculus. Cell Rep. 38, 110523 (2022).

    PubMed  PubMed Central  Google Scholar 

  20. Grüsser, S. M. et al. Remote activation of referred phantom sensation and cortical reorganization in human upper extremity amputees. Exp. Brain Res. 154, 97–102 (2004).

    PubMed  Google Scholar 

  21. Badde, S., Röder, B. & Heed, T. Feeling a touch to the hand on the foot. Curr. Biol. 29, 1491–1497.e4 (2019).

    PubMed  Google Scholar 

  22. Graziano, M. S. A. Ethological action maps: a paradigm shift for the motor cortex. Trends Cogn. Sci. 20, 121–132 (2016).

    PubMed  Google Scholar 

  23. Heslin, R., Nguyen, T. D. & Nguyen, M. L. Meaning of touch: the case of touch from a stranger or same sex person. J. Nonverbal Behav. 7, 147–157 (1983).

    Google Scholar 

  24. Gentsch, A., Panagiotopoulou, E. & Fotopoulou, A. Active interpersonal touch gives rise to the social softness illusion. Curr. Biol. 25, 2392–2397 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Tamè, L., Azañón, E. & Longo, M. R. M. R. A conceptual model of tactile processing across body features of size, shape, side, and spatial location. Front. Psychol. 10, 291 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. Heed, T. & Azañón, E. Using time to investigate space: a review of tactile temporal order judgments as a window onto spatial processing in touch. Front. Psychol. 5, 76 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Fritsch, G. & Hitzig, E. Über die elektrische erregbarkeit des grosshirns [Electric excitability of the cerebrum]. Arch. Anat. Physiol. Wissen 37, 300–332 (1870).

    Google Scholar 

  28. Ferrier, D. The Functions Of The Brain (Smith, Elder & Co, 1876).

  29. Leyton, A. S. F. & Sherrington, C. S. Observations on the exitable cortex of the chimpanzee, orang-utan, and gorilla. Q. J. Exp. Physiol. 11, 135–222 (1917).

    Google Scholar 

  30. Cushing, H. A note upon the Faradic stimulation of the postcentral gyrus in conscious patients. Brain 32, 44–53 (1909).

    Google Scholar 

  31. Foerster, O. The motor cortex in man in the light of Hughlings Jackson’s doctrines. Brain 59, 135–159 (1936).

    Google Scholar 

  32. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Google Scholar 

  33. Penfield, W. & Jasper, H. H. Epilepsy And The Functional Anatomy Of The Human Brain (Little, Brown & Co, 1954).

  34. Patel, G. H., Kaplan, D. M. & Snyder, L. H. Topographic organization in the brain: searching for general principles. Trends Cogn. Sci. 18, 351–363 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Sereno, M. I. & Tootell, R. B. From monkeys to humans: what do we now know about brain homologies? Curr. Opin. Neurobiol. 15, 135–144 (2005).

    PubMed  Google Scholar 

  36. Qi, H.-X. & Kaas, J. H. Myelin stains reveal an anatomical framework for the representation of the digits in somatosensory area 3b of macaque monkeys. J. Comp. Neurol. 477, 172–187 (2004).

    PubMed  Google Scholar 

  37. Schott, G. D. Penfield’s homunculus: a note on cerebral cartography. J. Neurol. Neurosurg. Psychiat. 56, 329–333 (1993).

    PubMed  PubMed Central  Google Scholar 

  38. Sanchez Panchuelo, R. M., Besle, J., Schluppeck, D., Humberstone, M. & Francis, S. Somatotopy in the human somatosensory system. Front. Hum. Neurosci. 12, 235 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Kaas, J. H., Nelson, R. J., Sur, M., Lin, C. S. & Merzenich, M. M. Multiple representations of the body within the primary somatosensory cortex of primates. Science. 204, 521–523 (1979).

    PubMed  Google Scholar 

  40. Kaas, J. H., Jain, N. & Qi, H.-X. The organization of the somatosensory system in primates. In The Somatosensory System (ed. Nelson, R. J.) 1–26 (Taylor & Francis, 2001).

  41. Kaas, J. H. The functional organization of somatosensory cortex in primates. Ann. Anat. Anat. Anz. 175, 509–518 (1993).

    Google Scholar 

  42. Saadon-Grosman, N., Loewenstein, Y. & Arzy, S. The ‘creatures’ of the human cortical somatosensory system. Brain Commun. 2, fcaa003 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Huang, R.-S., Chen, C., Tran, A. T., Holstein, K. L. & Sereno, M. I. Mapping multisensory parietal face and body areas in humans. Proc. Natl Acad. Sci. USA 109, 18114–18119 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. Sereno, M. I. & Huang, R.-S. A human parietal face area contains aligned head-centered visual and tactile maps. Nat. Neurosci. 9, 1337–1343 (2006).

    PubMed  Google Scholar 

  45. Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihrem Prinzipien dargestellt auf Grund des Zellenbaues [Comparative Theory of ocalization of the erebral ortex resented in its Principles on the Basis of the Cell Structure] (Barth, 1909).

  46. Vogt, C. & Vogt, O. Allgemeinere Ergebnisse unserer Hirnforschung. J. Psychol. Neurol. 25, 279–462 (1919).

    Google Scholar 

  47. White, L. Structure of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus. Cereb. Cortex 7, 18–30 (1997).

    PubMed  Google Scholar 

  48. Geyer, S., Schleicher, A. & Zilles, K. The somatosensory cortex of human: cytoarchitecture and regional distributions of receptor-binding sites. Neuroimage 6, 27–45 (1997).

    PubMed  Google Scholar 

  49. Wagstyl, K., Ronan, L., Goodyer, I. M. & Fletcher, P. C. Cortical thickness gradients in structural hierarchies. NeuroImage 111, 241–250 (2015).

    PubMed  Google Scholar 

  50. Sánchez-Panchuelo, R.-M. et al. Regional structural differences across functionally parcellated Brodmann areas of human primary somatosensory cortex. NeuroImage 93, 221–230 (2014).

    PubMed  Google Scholar 

  51. Schellekens, W. et al. A touch of hierarchy: population receptive fields reveal fingertip integration in Brodmann areas in human primary somatosensory cortex. Brain Struct. Funct. 226, 2099–2112 (2021).

    PubMed  PubMed Central  Google Scholar 

  52. Mountcastle, V. B. The Sensory Hand: Neural Mechanisms Of Somatic Sensation (Harvard Univ. Press, 2005).

  53. Iwamura, Y., Iriki, A. & Tanaka, M. Bilateral hand representation in the postcentral somatosensory cortex. Nature 369, 554–556 (1994).

    PubMed  Google Scholar 

  54. Randolph, M. & Semmes, J. Behavioral consequences of selective subtotal ablations in the postcentral gyrus of Macaca mulatta. Brain Res. 70, 55–70 (1974).

    PubMed  Google Scholar 

  55. Pons, T. P., Garraghty, P. E., Friedman, D. P. & Mishkin, M. Physiological evidence for serial processing in somatosensory cortex. Science. 237, 417–420 (1987).

    PubMed  Google Scholar 

  56. Garraghty, P. E., Florence, S. L. & Kaas, J. H. Ablations of areas 3a and 3b of monkey somatosensory cortex abolish cutaneous responsivity in area 1. Brain Res. 528, 165–169 (1990).

    PubMed  Google Scholar 

  57. Kosslyn, S. M. You can play 20 questions with nature and win: categorical versus coordinate spatial relations as a case study. Neuropsychologia 44, 1519–1523 (2006).

    PubMed  Google Scholar 

  58. Harnad, S. Categorical Perception: The Groundwork Of Cognition (Cambridge Univ. Press, 1987).

  59. de Vignemont, F., Majid, A., Jola, C. & Haggard, P. Segmenting the body into parts: evidence from biases in tactile perception. Q. J. Exp. Psychol. 62, 500–512 (2009).

    Google Scholar 

  60. Knight, F., Longo, M. R. & Bremner, A. J. Categorical perception of tactile distance. Cognition 131, 254–262 (2014).

    PubMed  Google Scholar 

  61. Knight, F., Cowie, D. & Bremner, A. J. Part-based representations of the body in early childhood: evidence from perceived distortions of tactile space across limb boundaries. Dev. Sci. 20, e12439 (2017).

    Google Scholar 

  62. Bermúdez, J. L. The Paradox Of Self-Consciousness (MIT Press, 1998).

    Google Scholar 

  63. Shen, G., Smyk, N. J., Meltzoff, A. N. & Marshall, P. J. Neuropsychology of human body parts: exploring categorical boundaries of tactile perception using somatosensory mismatch responses. J. Cogn. Neurosci. 30, 1858–1869 (2018).

    PubMed  Google Scholar 

  64. Shen, G., Meltzoff, A. N., Weiss, S. M. & Marshall, P. J. Body representation in infants: categorical boundaries of body parts as assessed by somatosensory mismatch negativity. Dev. Cogn. Neurosci. 44, 100795 (2020).

    PubMed  PubMed Central  Google Scholar 

  65. Kuehn, E. & Sereno, M. I. Modelling the human cortex in three dimensions. Trends Cogn. Sci. 22, 1073–1075 (2018).

    PubMed  Google Scholar 

  66. Alkemade, A. et al. A unified 3D map of microscopic architecture and MRI of the human brain. Sci. Adv. 8, eabj7892 (2022).

    PubMed  PubMed Central  Google Scholar 

  67. Doehler, J. et al. The 3D structural architecture of the humanhand area is non-topographic. J. Neurosci. 43, 3456–3476 (2023).

    PubMed  PubMed Central  Google Scholar 

  68. Woolsey, T. A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex. Brain Res. 17, 205–242 (1970).

    PubMed  Google Scholar 

  69. Furuta, T., Kaneko, T. & Deschenes, M. Septal neurons in barrel cortex derive their receptive field input from the lemniscal pathway. J. Neurosci. 29, 4089–4095 (2009).

    PubMed  PubMed Central  Google Scholar 

  70. Kim, U. & Ebner, F. F. Barrels and septa: separate circuits in rat barrels field cortex. J. Comp. Neurol. 408, 489–505 (1999).

    PubMed  Google Scholar 

  71. Almási, Z., Dávid, C., Witte, M. & Staiger, J. F. Distribution patterns of three molecularly defined classes of GABAergic neurons across columnar compartments in mouse barrel cortex. Front. Neuroanat. 13, 45 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Alloway, K., Zhang, M. & Chakrabarti, S. Septal columns in rodent barrel cortex: functional circuits for modulating whisking behavior. J. Comp. Neurol. 480, 299–309 (2004).

    PubMed  Google Scholar 

  73. Lee, T., Alloway, K. & Kim, U. Interconnected cortical networks between primary somatosensory cortex septal columns and posterior parietal cortex in rat. J. Comp. Neurol. 519, 405–419 (2011).

    PubMed  Google Scholar 

  74. Jain, N. A histologically visible representation of the fingers and palm in primate area 3b and its immutability following long-term deafferentations. Cereb. Cortex 8, 227–236 (1998).

    PubMed  Google Scholar 

  75. Flechsig, P. Anatomie des menschlichen Gehirns und Rückenmark (Thieme, 1920).

  76. Kuehn, E. et al. Body topography parcellates human sensory and motor cortex. Cereb. Cortex 27, 3790–3805 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Romano, D., Marini, F. & Maravita, A. Standard body–space relationships: fingers hold spatial information. Cognition 165, 105–112 (2017).

    PubMed  Google Scholar 

  78. Romano, D. et al. The standard posture of the hand. J. Exp. Psychol. Hum. Percept. Perform. 45, 1164–1173 (2019).

    PubMed  Google Scholar 

  79. Manser-Smith, K., Romano, D., Tamè, L. & Longo, M. R. Fingers hold spatial information that toes do not. Q. J. Exp. Psychol. 74, 95–105 (2021).

    Google Scholar 

  80. Cobb, K., Goodwin, R. & Saelens, E. Spontaneous hand positions of newborn infants. J. Genet. Psychol. 108, 225–237 (1966).

    PubMed  Google Scholar 

  81. Huttenlocher, J., Hedges, L. V. & Duncan, S. Categories and particulars: prototype effects in estimating spatial location. Psychol. Rev. 98, 352–376 (1991).

    PubMed  Google Scholar 

  82. Azañón, E., Tucciarelli, R., Siromahov, M., Amoruso, E. & Longo, M. R. Mapping visual spatial prototypes: multiple reference frames shape visual memory. Cognition 198, 104199 (2020).

    PubMed  Google Scholar 

  83. Brooks, J., Seizova-Cajic, T. & Taylor, J. L. Biases in tactile localization by pointing: compression for weak stimuli and centering for distributions of stimuli. J. Neurophysiol. 121, 764–772 (2019).

    PubMed  Google Scholar 

  84. Steenbergen, P., Buitenweg, J. R., Trojan, J. & Veltink, P. H. Tactile localization depends on stimulus intensity. Exp. Brain Res. 232, 597–607 (2014).

    PubMed  Google Scholar 

  85. Ambron, E., Liu, Y., Grzenda, M. & Medina, J. Examining central biases in somatosensory localization: evidence from brain-damaged individuals. Neuropsychologia 166, 108137 (2022).

    PubMed  Google Scholar 

  86. Lacquaniti, F., Ferrigno, G., Pedotti, A., Soechting, J. & Terzuolo, C. Changes in spatial scale in drawing and handwriting: kinematic contributions by proximal and distal joints. J. Neurosci. 7, 819–828 (1987).

    PubMed  PubMed Central  Google Scholar 

  87. Lashley, K. Basic neural mechanisms in behavior. Psychol. Rev. 37, 265–283 (1930).

    Google Scholar 

  88. Rijntjes, M. et al. A blueprint for movement: functional and anatomical representations in the human motor system. J. Neurosci. 19, 8043–8048 (1999).

    PubMed  PubMed Central  Google Scholar 

  89. Huber, L. et al. Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex. NeuroImage 208, 116463 (2020).

    PubMed  Google Scholar 

  90. Yoshioka, T., Craig, J. C., Beck, G. C. & Hsiao, S. S. Perceptual constancy of texture roughness in the tactile system. J. Neurosci. 31, 17603–17611 (2011).

    PubMed  PubMed Central  Google Scholar 

  91. de Vignemont, F. Mind The Body (Oxford Univ. Press, 2017).

  92. Mancini, F., Longo, M. R., Iannetti, G. D. & Haggard, P. A supramodal representation of the body surface. Neuropsychologia 49, 1194–1201 (2011).

    PubMed  Google Scholar 

  93. Schweizer, R., Maier, M., Braun, C. & Birbaumer, N. Distribution of mislocalizations of tactile stimuli on the fingers of the human hand. Somatosens. Mot. Res. 17, 309–316 (2000).

    PubMed  Google Scholar 

  94. Manser-Smith, K., Tamè, L. & Longo, M. R. M. R. Tactile confusions of the fingers and toes. J. Exp. Psychol. Hum. Percept. Perform. 44, 1727–1738 (2018).

    PubMed  Google Scholar 

  95. Cicmil, N., Meyer, A. P. & Stein, J. F. Tactile toe agnosia and percept of a “missing toe” in healthy humans. Perception 45, 265–280 (2016).

    PubMed  Google Scholar 

  96. Manser-Smith, K., Tamè, L. & Longo, M. R. A common representation of fingers and toes. Acta Psychol. 199, 102900 (2019).

    Google Scholar 

  97. Tamè, L., Wühle, A., Petri, C. D., Pavani, F. & Braun, C. Concurrent use of somatotopic and external reference frames in a tactile mislocalization task. Brain Cogn. 111, 25–33 (2017).

    PubMed  Google Scholar 

  98. Besle, J., Sánchez-Panchuelo, R.-M., Bowtell, R., Francis, S. & Schluppeck, D. Event-related fMRI at 7T reveals overlapping cortical representations for adjacent fingertips in S1 of individual subjects. Hum. Brain Mapp. 35, 2027–2043 (2014).

    PubMed  Google Scholar 

  99. Borsook, D. et al. Acute plasticity in the human somatosensory cortex following amputation. Neuroreport 9, 1013–1017 (1998).

    PubMed  Google Scholar 

  100. Beste, C. & Dinse, H. R. Learning without training. Curr. Biol. 23, R489–R499 (2013).

    PubMed  Google Scholar 

  101. Muret, D. et al. Touch improvement at the hand transfers to the face. Curr. Biol. 24, R736–R737 (2014).

    PubMed  Google Scholar 

  102. Fitzgerald, P. J., Lane, J. W., Thakur, P. H. & Hsiao, S. S. Receptive field (RF) properties of the macaque second somatosensory cortex: RF size, shape, and somatotopic organization. J. Neurosci. 26, 6485–6495 (2006).

    PubMed  PubMed Central  Google Scholar 

  103. Taoka, M. et al. A systematic analysis of neurons with large somatosensory receptive fields covering multiple body regions in the secondary somatosensory area of macaque monkeys. J. Neurophysiol. 116, 2152–2162 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Tamè, L. et al. The contribution of primary and secondary somatosensory cortices to the representation of body parts and body sides: an fMRI adaptation study. J. Cogn. Neurosci. 24, 2306–2320 (2012).

    PubMed  Google Scholar 

  105. Tal, Z., Geva, R. & Amedi, A. Positive and negative somatotopic BOLD responses in contralateral versus ipsilateral penfield homunculus. Cereb. Cortex 27, 962–980 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Asanuma, H., Stoney, S. D. & Abzug, C. Relationship between afferent input and motor outflow in cat motorsensory cortex. J. Neurophysiol. 31, 670–681 (1968).

    PubMed  Google Scholar 

  107. Strick, P. L. & Preston, J. B. Sorting of somatosensory afferent information in primate motor cortex. Brain Res. 156, 364–368 (1978).

    PubMed  Google Scholar 

  108. Makris, N. et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb. Cortex 15, 854–869 (2005).

    PubMed  Google Scholar 

  109. Fromm, C., Wise, S. P. & Evarts, E. V. Sensory response properties of pyramidal tract neurons in the precentral motor cortex and postcentral gyrus of the rhesus monkey. Exp. Brain Res. 54, 177–185 (1984).

    PubMed  Google Scholar 

  110. Kinsbourne, M. & Warrington, E. K. A study of finger agnosia. Brain 85, 47–66 (1962).

    PubMed  Google Scholar 

  111. Mayer, E. et al. A pure case of Gerstmann syndrome with a subangular lesion. Brain 122, 1107–1120 (1999).

    PubMed  Google Scholar 

  112. Tucha, O., Steup, A., Smely, C. & Lange, K. W. Toe agnosia in Gerstmann syndrome. J. Neurol. Neurosurg. Psychiat. 63, 399–403 (1997).

    PubMed  PubMed Central  Google Scholar 

  113. Rolian, C., Lieberman, D. E. & Hallgrímsson, B. The coevolution of human hands and feet. Evolution 64, 1558–1568 (2010).

    PubMed  Google Scholar 

  114. Marieb, E. Essentials Of Human Anatomy And Physiology (Benjamin Cummings, 2012).

  115. Owen, R. On The Nature Of Limbs (Univ. Chicago Press, 2008 [first published 1849]).

  116. Braun, C. et al. Objective measurement of tactile mislocalization. IEEE Trans. Biomed. Eng. 52, 728–735 (2005).

    PubMed  Google Scholar 

  117. Schweizer, R. & Braun, C. The distribution of mislocalizations across fingers demonstrates training-induced neuroplastic changes in somatosensory cortex. Exp. Brain Res. 139, 435–442 (2001).

    PubMed  Google Scholar 

  118. Striem-Amit, E., Vannuscorps, G. & Caramazza, A. Plasticity based on compensatory effector use in the association but not primary sensorimotor cortex of people born without hands. Proc. Natl Acad. Sci. USA 115, 7801–7806 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Liu, Y., Vannuscorps, G., Caramazza, A. & Striem-Amit, E. Evidence for an effector-independent action system from people born without hands. Proc. Natl Acad. Sci. USA 117, 28433–28441 (2020).

    PubMed  PubMed Central  Google Scholar 

  120. Dempsey-Jones, H., Wesselink, D. B., Friedman, J. & Makin, T. R. Organized toe maps in extreme foot users. Cell Rep. 28, 2748–2756.e4 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Gindrat, A.-D., Chytiris, M., Balerna, M., Rouiller, E. M. & Ghosh, A. Use-dependent cortical processing from fingertips in touchscreen phone users. Curr. Biol. 25, 109–116 (2015).

    PubMed  Google Scholar 

  122. Hahamy, A. & Makin, T. R. Remapping in cerebral and cerebellar cortices is not restricted by somatotopy. J. Neurosci. 39, 9328–9342 (2019).

    PubMed  PubMed Central  Google Scholar 

  123. Willett, F. R. et al. Hand knob area of premotor cortex represents the whole body in a compositional way. Cell 181, 396–409.e26 (2020).

    PubMed  PubMed Central  Google Scholar 

  124. Ganguly, K. et al. Cortical representation of ipsilateral arm movements in monkey and man. J. Neurosci. 29, 12948–12956 (2009).

    PubMed  PubMed Central  Google Scholar 

  125. Haar, S., Dinstein, I., Shelef, I. & Donchin, O. Effector-invariant movement encoding in the human motor system. J. Neurosci. 37, 9054–9063 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Heed, T., Leone, F. T. M., Toni, I. & Medendorp, W. P. Functional versus effector-specific organization of the human posterior parietal cortex: revisited. J. Neurophysiol. 116, 1885–1899 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Tamè, L., Pavani, F., Papadelis, C., Farnè, A. & Braun, C. Early integration of bilateral touch in the primary somatosensory cortex. Hum. Brain Mapp. 36, 1506–1523 (2015).

    PubMed  Google Scholar 

  128. Tamè, L. et al. Somatotopy and temporal dynamics of sensorimotor interactions: evidence from double afferent inhibition. Eur. J. Neurosci. 41, 1459–1465 (2015).

    PubMed  Google Scholar 

  129. Iwamura, Y. Bilateral receptive field neurons and callosal connections in the somatosensory cortex. Phil. Trans. R. Soc. Lond. B 355, 267–273 (2000).

    Google Scholar 

  130. Tamè, L., Braun, C., Holmes, N. P., Farnè, A. & Pavani, F. Bilateral representations of touch in the primary somatosensory cortex. Cogn. Neuropsychol. 33, 48–66 (2016).

    PubMed  Google Scholar 

  131. Iwamura, Y., Tanaka, M., Iriki, A., Taoka, M. & Toda, T. Processing of tactile and kinesthetic signals from bilateral sides of the body in the postcentral gyrus of awake monkeys. Behav. Brain Res. 135, 185–190 (2002).

    PubMed  Google Scholar 

  132. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    PubMed  PubMed Central  Google Scholar 

  133. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    PubMed  PubMed Central  Google Scholar 

  134. Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).

    PubMed  Google Scholar 

  135. Zhang, C. Y. et al. Partially mixed selectivity in human posterior parietal association cortex. Neuron 95, 697–708.e4 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Zhang, C. Y. et al. Preservation of partially mixed selectivity in human posterior parietal cortex across changes in task context. eNeuro https://doi.org/10.1523/ENEURO.0222-19.2019 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Azañón, E. & Longo, M. R. Tactile perception: beyond the somatotopy of the somatosensory cortex. Curr. Biol. 29, R322–R324 (2019).

    PubMed  Google Scholar 

  138. Kress, I. U., Minati, L., Ferraro, S. & Critchley, H. D. Direct skin-to-skin versus indirect touch modulates neural responses to stroking versus tapping. Neuroreport 22, 646–651 (2011).

    PubMed  PubMed Central  Google Scholar 

  139. Boehme, R. & Olausson, H. Differentiating self-touch from social touch. Curr. Opin. Behav. Sci. 43, 27–33 (2022).

    Google Scholar 

  140. Weiskrantz, L. & Zhang, D. Residual tactile sensitivity with self-directed stimulation in hemianaesthesia. J. Neurol. Neurosurg. Psychiat. 50, 632–634 (1987).

    PubMed  PubMed Central  Google Scholar 

  141. Valentini, M., Kischka, U. & Halligan, P. W. Residual haptic sensation following stroke using ipsilateral stimulation. J. Neurol. Neurosurg. Psychiat. 79, 266–270 (2008).

    PubMed  Google Scholar 

  142. Coslett, H. B. & Lie, E. Bare hands and attention: evidence for a tactile representation of the human body. Neuropsychologia 42, 1865–1876 (2004).

    PubMed  Google Scholar 

  143. van Stralen, H. E., van Zandvoort, M. J. E. & Dijkerman, H. C. The role of self-touch in somatosensory and body representation disorders after stroke. Phil. Trans. R. Soc. B 366, 3142–3152 (2011).

    PubMed  PubMed Central  Google Scholar 

  144. Franklin, D. W. & Wolpert, D. M. Computational mechanisms of sensorimotor control. Neuron 72, 425–442 (2011).

    PubMed  Google Scholar 

  145. Shergill, S. S., Bays, P. M., Frith, C. D. & Wolpert, D. M. Two eyes for an eye: the neuroscience of force escalation. Science 301, 187–187 (2003).

    PubMed  Google Scholar 

  146. Bays, P. M., Wolpert, D. M. & Flanagan, J. R. Perception of the consequences of self-action is temporally tuned and event driven. Curr. Biol. 15, 1125–1128 (2005).

    PubMed  Google Scholar 

  147. Weiskrantz, L., Elliott, J. & Darlington, C. Preliminary observations on tickling oneself. Nature 230, 598–599 (1971).

    PubMed  Google Scholar 

  148. Blakemore, S. J., Frith, C. D. & Wolpert, D. M. Spatio-temporal prediction modulates the perception of self-produced stimuli. J. Cogn. Neurosci. 11, 551–559 (1999).

    PubMed  Google Scholar 

  149. Kilteni, K. & Ehrsson, H. H. Sensorimotor predictions and tool use: hand-held tools attenuate self-touch. Cognition 165, 1–9 (2017).

    PubMed  Google Scholar 

  150. Knoetsch, F. & Zimmermann, E. The spatial specificity of sensory attenuation for self-touch. Consc. Cogn. 92, 103135 (2021).

    Google Scholar 

  151. Thomas, E. R., Yon, D., de Lange, F. P. & Press, C. Action enhances predicted touch. Psychol. Sci. 33, 48–59 (2022).

    PubMed  Google Scholar 

  152. Kilteni, K. & Ehrsson, H. H. Body ownership determines the attenuation of self-generated tactile sensations. Proc. Natl Acad. Sci. USA 114, 8426–8431 (2017).

    PubMed  PubMed Central  Google Scholar 

  153. Burin, D., Pyasik, M., Salatino, A. & Pia, L. That’s my hand! Therefore, that’s my willed action: how body ownership acts upon conscious awareness of willed actions. Cognition 166, 164–173 (2017).

    PubMed  Google Scholar 

  154. Pyasik, M. et al. I’m a believer: illusory self-generated touch elicits sensory attenuation and somatosensory evoked potentials similar to the real self-touch. NeuroImage 229, 117727 (2021).

    PubMed  Google Scholar 

  155. Press, C., Kok, P. & Yon, D. The perceptual prediction paradox. Trends Cogn. Sci. 24, 13–24 (2020).

    PubMed  Google Scholar 

  156. Kilteni, K., Houborg, C. & Ehrsson, H. H. Rapid learning and unlearning of predicted sensory delays in self-generated touch. eLife 8, e42888 (2019).

    PubMed  PubMed Central  Google Scholar 

  157. Boehme, R., Hauser, S., Gerling, G. J., Heilig, M. & Olausson, H. Distinction of self-produced touch and social touch at cortical and spinal cord levels. Proc. Natl Acad. Sci. USA 116, 2290–2299 (2019).

    PubMed  PubMed Central  Google Scholar 

  158. Lederman, S. J. & Klatzky, R. L. Haptic perception: a tutorial. Atten. Percept. Psychophys. 71, 1439–1459 (2009).

    PubMed  Google Scholar 

  159. Kilteni, K. & Ehrsson, H. H. Functional connectivity between the cerebellum and somatosensory areas implements the attenuation of self-generated touch. J. Neurosci. 40, 894–906 (2020).

    PubMed  PubMed Central  Google Scholar 

  160. Olausson, H., Wessberg, J., Morrison, I., McGlone, F. & Vallbo, Å. The neurophysiology of unmyelinated tactile afferents. Neurosci. Biobehav. Rev. 34, 185–191 (2010).

    PubMed  Google Scholar 

  161. Olausson, H. et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nat. Neurosci. 5, 900–904 (2002).

    PubMed  Google Scholar 

  162. Bjornsdotter, M., Loken, L., Olausson, H., Vallbo, A. & Wessberg, J. Somatotopic organization of gentle touch processing in the posterior insular cortex. J. Neurosci. 29, 9314–9320 (2009).

    PubMed  PubMed Central  Google Scholar 

  163. Löken, L. S., Wessberg, J., Morrison, I., McGlone, F. & Olausson, H. Coding of pleasant touch by unmyelinated afferents in humans. Nat. Neurosci. 12, 547–548 (2009).

    PubMed  Google Scholar 

  164. Morrison, I., Bjornsdotter, M. & Olausson, H. Vicarious responses to social touch in posterior insular cortex are tuned to pleasant caressing speeds. J. Neurosci. 31, 9554–9562 (2011).

    PubMed  PubMed Central  Google Scholar 

  165. Ackerley, R. et al. Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. J. Neurosci. 34, 2879–2883 (2014).

    PubMed  PubMed Central  Google Scholar 

  166. Livingstone, M. S. Triggers for mother love. Proc. Natl Acad. Sci. USA 119, e221222411 (2022).

    Google Scholar 

  167. Harlow, H. F. & Zimmermann, R. R. Affectional response in the infant monkey. Science 130, 421–432 (1959).

    PubMed  Google Scholar 

  168. Kriegeskorte, N. et al. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 1126–1141 (2008).

    PubMed  PubMed Central  Google Scholar 

  169. Blanke, O., Slater, M. & Serino, A. Behavioral, neural, and computational principles of bodily self-consciousness. Neuron 88, 145–166 (2015).

    PubMed  Google Scholar 

  170. Adolphs, R. The social brain: neural basis of social knowledge. Annu. Rev. Psychol. 60, 693–716 (2009).

    PubMed  PubMed Central  Google Scholar 

  171. Sensory homunculus. wikimedia https://commons.wikimedia.org/wiki/File:1421_Sensory_Homunculus.jpg (2023).

  172. Bernstein, N. Co-ordination And Regulation Of Movements (Pergamon, 1967).

  173. Merton, P. A. How we control the contraction of our muscles. Sci. Am. 226, 30–37 (1972).

    PubMed  Google Scholar 

  174. Castiello, U. & Stelmach, G. E. Generalized representation of handwriting: evidence of effector independence. Acta Psychol. 82, 53–68 (1993).

    Google Scholar 

  175. Kadmon Harpaz, N., Flash, T. & Dinstein, I. Scale-invariant movement encoding in the human motor system. Neuron 81, 452–462 (2014).

    PubMed  Google Scholar 

  176. Wing, A. M. Motor control: mechanisms of motor equivalence in handwriting. Curr. Biol. 10, R245–R248 (2000).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Luigi Tamè.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Esther Kuehn, Tatjana Seizova-Cajic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamè, L., Longo, M.R. Emerging principles in functional representations of touch. Nat Rev Psychol 2, 459–471 (2023). https://doi.org/10.1038/s44159-023-00197-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-023-00197-6

  • Springer Nature America, Inc.

Navigation