Skip to main content
Log in

Dimensionality reduction of calcium-imaged neuronal population activity

  • Article
  • Published:

From Nature Computational Science

View current issue Submit your manuscript

Abstract

Calcium imaging has been widely adopted for its ability to record from large neuronal populations. To summarize the time course of neural activity, dimensionality-reduction methods, which have been applied extensively to population spiking activity, may be particularly useful. However, it is unclear whether the dimensionality-reduction methods applied to spiking activity are appropriate for calcium imaging. We thus carried out a systematic study of design choices based on standard dimensionality-reduction methods. We have also developed a method to perform deconvolution and dimensionality reduction simultaneously (calcium imaging linear dynamical system, CILDS). CILDS most accurately recovered the single-trial, low-dimensional time courses from simulated calcium imaging data. CILDS also outperformed the other methods on calcium imaging recordings from larval zebrafish and mice. More broadly, this study represents a foundation for summarizing calcium-imaging recordings of large neuronal populations using dimensionality reduction in diverse experimental settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Dimensionality reduction of calcium imaging recordings.
Fig. 2: Comparison of three classes of dimensionality reduction methods.
Fig. 3: Accuracy of latent-variable recovery in simulation.
Fig. 4: Comparison of CILDS and methods that do not include a latent dynamical model.
Fig. 5: Performance comparison on larval-zebrafish DRN recordings.
Fig. 6: Performance comparison on mice V1 recordings.

Similar content being viewed by others

Data availability

Larval zebrafish DRN data are available at https://doi.org/10.6084/m9.figshare.21646682 (ref. 65). Mouse V1 data are available at https://doi.org/10.12751/g-node.wc3f8g (ref. 66) Source data are provided with this paper.

Code availability

A MATLAB implementation of CILDS is available on GitHub at https://github.com/kohth/cilds and on Zenodo at https://doi.org/10.5281/zenodo.7388544 (refs. 67)

References

  1. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  Google Scholar 

  2. Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).

    Article  Google Scholar 

  3. Gao, P. & Ganguli, S. On simplicity and complexity in the brave new world of large-scale neuroscience. Curr. Opin. Neurobiol. 32, 148–155 (2015).

    Article  Google Scholar 

  4. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    Article  Google Scholar 

  5. Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    Article  Google Scholar 

  6. Sadtler, P. T. et al. Neural constraints on learning. Nature 512, 423–426 (2014).

    Article  Google Scholar 

  7. Murray, J. D. et al. Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. Proc. Natl Acad. Sci. USA 114, 394–399 (2017).

    Article  Google Scholar 

  8. Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018).

    Article  Google Scholar 

  9. Cohen, M. R. & Maunsell, J. H. R. A neuronal population measure of attention predicts behavioral performance on individual trials. J. Neurosci. 30, 15241–15253 (2010).

    Article  Google Scholar 

  10. Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673 (2005).

    Article  Google Scholar 

  11. Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. Functional organization of human sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013).

    Article  Google Scholar 

  12. Peron, S., Chen, T.-W. & Svoboda, K. Comprehensive imaging of cortical networks. Curr. Opin. Neurobiol. 32, 115–123 (2015).

    Article  Google Scholar 

  13. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  Google Scholar 

  14. Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    Article  Google Scholar 

  15. Briggman, K., Abarbanel, H. & Kristan, W. Optical imaging of neuronal populations during decision-making. Science 307, 896–901 (2005).

    Article  Google Scholar 

  16. Harvey, C. D., Coen, P. & Tank, D. W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

    Article  Google Scholar 

  17. Ahrens, M. B. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 (2012).

    Article  Google Scholar 

  18. Kato, H., Chu, M., Isaacson, J. & Komiyama, T. Dynamic sensory representations in the olfactory bulb: modulation by wakefulness and experience. Neuron 76, 962–975 (2012).

    Article  Google Scholar 

  19. Daie, K., Goldman, M. & Aksay, E. Spatial patterns of persistent neural activity vary with the behavioral context of short-term memory. Neuron 85, 847–860 (2015).

    Article  Google Scholar 

  20. Morcos, A. S. & Harvey, C. D. History-dependent variability in population dynamics during evidence accumulation in cortex. Nat. Neurosci. 19, 1672–1681 (2016).

    Article  Google Scholar 

  21. Makino, H. et al. Transformation of cortex-wide emergent properties during motor learning. Neuron 94, 880–890 (2017).

    Article  Google Scholar 

  22. Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C. D. Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell 170, 986–999 (2017).

    Article  Google Scholar 

  23. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D. High-dimensional geometry of population responses in visual cortex. Nature 571, 361–365 (2019).

    Article  Google Scholar 

  24. Rumyantsev, O. I. et al. Fundamental bounds on the fidelity of sensory cortical coding. Nature 580, 100–105 (2020).

    Article  Google Scholar 

  25. Pashkovski, S. L. et al. Structure and flexibility in cortical representations of odour space. Nature 583, 253–258 (2020).

    Article  Google Scholar 

  26. Nieh, E. et al. Geometry of abstract learned knowledge in the hippocampus. Nature 595, 80–84 (2021).

    Article  Google Scholar 

  27. Wei, Z. et al. A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology. PLoS Comput. Biol. 16, e1008198 (2020).

    Article  Google Scholar 

  28. Afshar, A. et al. Single-trial neural correlates of arm movement preparation. Neuron 71, 555–564 (2011).

    Article  Google Scholar 

  29. Kiani, R., Cueva, C. J., Reppas, J. B. & Newsome, W. T. Dynamics of neural population responses in prefrontal cortex indicate changes of mind on single trials. Curr. Biol. 24, 1542–1547 (2014).

    Article  Google Scholar 

  30. Gouvêa, T. S. et al. Striatal dynamics explain duration judgments. eLife 4, e11386 (2015).

    Article  Google Scholar 

  31. Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex. eLife 4, e04677 (2015).

    Article  Google Scholar 

  32. Vogelstein, J. T. et al. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol. 104, 3691–3704 (2010).

    Article  Google Scholar 

  33. Theis, L. et al. Benchmarking spike rate inference in population calcium imaging. Neuron 90, 471–482 (2016).

    Article  Google Scholar 

  34. Friedrich, J., Zhou, P. & Paninski, L. Fast online deconvolution of calcium imaging data. PLoS Comput. Biol. 13, e1005423 (2017).

    Article  Google Scholar 

  35. Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of population coding across cortex. Nature 548, 92–96 (2017).

    Article  Google Scholar 

  36. Zhu, F. et al. A deep learning framework for inference of single-trial neural population dynamics from calcium imaging with subframe temporal resolution. Nat. Neurosci. 25, 1724–1734 (2022).

    Article  Google Scholar 

  37. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

    Article  Google Scholar 

  38. Yu, B. M. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102, 614–635 (2009).

    Article  Google Scholar 

  39. Pei, F. C. et al. Neural latents benchmark ‘21: evaluating latent variable models of neural population activity. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2) (eds Vanschoren, J. & Yeung, S.) Vol. 1 (Curran Associates, 2021).

  40. Kawashima, T., Zwart, M. F., Yang, C.-T., Mensh, B. D. & Ahrens, M. B. The serotonergic system tracks the outcomes of actions to mediate short-term motor learning. Cell 167, 933–946 (2016).

    Article  Google Scholar 

  41. Jeon, B. B., Swain, A. D., Good, J. T., Chase, S. M. & Kuhlman, S. J. Feature selectivity is stable in primary visual cortex across a range of spatial frequencies. Sci. Rep. 8, 15288–15288 (2018).

    Article  Google Scholar 

  42. Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15, 805–815 (2018).

    Article  Google Scholar 

  43. Churchland, M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).

    Article  Google Scholar 

  44. Williamson, R. C. et al. Scaling properties of dimensionality reduction for neural populations and network models. PLoS Comput. Biol. 12, e1005141 (2016).

    Article  Google Scholar 

  45. Umakantha, A. et al. Bridging neuronal correlations and dimensionality reduction. Neuron 109, 2740–2754 (2021).

    Article  Google Scholar 

  46. Huang, C. et al. Circuit models of low-dimensional shared variability in cortical networks. Neuron 101, 337–348 (2019).

    Article  Google Scholar 

  47. Triplett, M. A., Pujic, Z., Sun, B., Avitan, L. & Goodhill, G. J. Model-based decoupling of evoked and spontaneous neural activity in calcium imaging data. PLoS Comput. Biol. 16, e1008330 (2020).

    Article  Google Scholar 

  48. Aitchison, L. et al. Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit. In Advances in Neural Information Processing Systems (eds Guyon, I. et al.) Vol. 30, 3486–3495 (Curran Associates, 2017).

  49. Kao, J. C. et al. Single-trial dynamics of motor cortex and their applications to brain-machine interfaces. Nat. Commun. 6, 7759 (2015).

    Article  Google Scholar 

  50. Williams, A. H. et al. Discovering precise temporal patterns in large-scale neural recordings through robust and interpretable time warping. Neuron 105, 246–259 (2020).

    Article  Google Scholar 

  51. Kobak, D. et al. Demixed principal component analysis of neural population data. eLife 5, e10989 (2016).

    Article  Google Scholar 

  52. Archer, E. W., Koster, U., Pillow, J. W. & Macke, J. H. Low-dimensional models of neural population activity in sensory cortical circuits. In Advances in Neural Information Processing Systems (eds Ghahramani, Z. et al.) Vol. 27, 343–351 (Curran Associates, 2014).

  53. Lakshmanan, K. C., Sadtler, P. T., Tyler-Kabara, E. C., Batista, A. P. & Yu, B. M. Extracting low-dimensional latent structure from time series in the presence of delays. Neural Comput. 27, 1825–1856 (2015).

    Article  MATH  Google Scholar 

  54. Elsayed, G. & Cunningham, J. Structure in neural population recordings: an expected byproduct of simpler phenomena?. Nat. Neurosci. 20, 1310–1318 (2017).

    Article  Google Scholar 

  55. Pnevmatikakis, E. et al. Simultaneous denoising, deconvolution and demixing of calcium imaging data. Neuron 89, 285–299 (2016).

    Article  Google Scholar 

  56. Deneux, T. et al. Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo. Nat. Commun. 7, 12190 (2016).

    Article  Google Scholar 

  57. Jewell, S. & Witten, D. Exact spike train inference via 0 optimization. Ann. Appl. Stat. 12, 2457–2482 (2017).

    MATH  Google Scholar 

  58. Prince, L. Y., Bakhtiari, S., Gillon, C. J. & Richards, B. A. Parallel inference of hierarchical latent dynamics in two-photon calcium imaging of neuronal populations. Preprint at https://www.biorxiv.org/content/early/2021/03/08/2021.03.05.434105.full.pdf (2021).

  59. Bittner, S. R. et al. Population activity structure of excitatory and inhibitory neurons. PLoS ONE 12, e0181773 (2017).

    Article  Google Scholar 

  60. Chen, J. L., Voigt, F. F., Javadzadeh, M., Krueppel, R. & Helmchen, F. Long-range population dynamics of anatomically defined neocortical networks. eLife 5, e14679 (2016).

    Article  Google Scholar 

  61. Semedo, J. D., Gokcen, E., Machens, C. K., Kohn, A. & Yu, B. M. Statistical methods for dissecting interactions between brain areas. Curr. Opin. Neurobiol. 65, 59–69 (2020).

    Article  Google Scholar 

  62. Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at https://www.biorxiv.org/content/early/2017/07/20/061507.full.pdf (2017).

  63. Freeman, J. et al. Mapping brain activity at scale with cluster computing. Nat. Methods 11, 941–950 (2014).

    Article  Google Scholar 

  64. Santhanam, G. et al. Factor-analysis methods for higher-performance neural prostheses. J. Neurophysiol. 102, 1315–1330 (2009).

    Article  Google Scholar 

  65. Kawashima, T. & Ahrens, M. B. Calcium imaging in the dorsal raphe nucleus of zebrafish. figshare https://doi.org/10.6084/m9.figshare.21646682.v6 (2022).

  66. Jeon, B. & Kuhlman, S. Responses of V1 excitatory neurons to full-field grating. G-Node https://doi.org/10.12751/g-node.wc3f8g (2022).

  67. Koh, T. kohth/cilds: cilds; https://doi.org/10.5281/zenodo.7388544 (2022).

Download references

Acknowledgements

We thank K. P. Nguyen for the animal illustrations. This work was supported by the Agency for Science, Technology and Research (A*STAR) Singapore (T.H.K.), Howard Hughes Medical Institute (W.E.B., T.K., Z.W. and M.B.A.), Simons Foundation Simons Collaboration on the Global Brain Award 542943 (M.B.A.) and 543065 (B.M.Y.), the Shurl and Kay Curci Foundation (S.M.C. and S.J.K.), NIH R01 HD071686 (S.M.C. and B.M.Y.), NIH R01 EY024678 (S.J.K.), NSF NCS BCS1533672 (S.M.C. and B.M.Y.), NSF CAREER award IOS1553252 (S.M.C.), NSF NCS DRL2124066 (B.M.Y. and S.M.C.), NSF NCS BCS1734916 (B.M.Y.), NIH CRCNS R01 NS105318 (B.M.Y.), NIH CRCNS R01 MH118929 (B.M.Y.) and NIH R01 EB026953 (B.M.Y.).

Author information

Authors and Affiliations

Authors

Contributions

T.H.K., W.E.B., S.M.C. and B.M.Y. designed the dimensionality-reduction and analysis methods. T.H.K. derived and implemented the dimensionality-reduction methods. T.H.K. performed the analyses, based on earlier analyses by R.S., T.K. and M.B.A. contributed to evaluation of the methods. T.K., B.B.J., Y.M., S.J.K. and M.B.A. designed the animal experiments. T.K. and Y.M. performed the larval zebrafish experiments, and B.B.J. performed the mouse experiments. Z.W. processed and segmented the 66-Hz single-plane larval zebrafish recordings. T.H.K., W.E.B., M.B.A., S.M.C. and B.M.Y. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Misha B. Ahrens, Steven M. Chase or Byron M. Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Germán Sumbre and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ananya Rastogi, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Table 1 and methods.

Reporting Summary

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, T.H., Bishop, W.E., Kawashima, T. et al. Dimensionality reduction of calcium-imaged neuronal population activity. Nat Comput Sci 3, 71–85 (2023). https://doi.org/10.1038/s43588-022-00390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-022-00390-2

  • Springer Nature America, Inc.

Navigation