Skip to main content
Log in

Climate change impacts on Antarctic krill behaviour and population dynamics

  • Review Article
  • Published:

From Nature Reviews Earth & Environment

View current issue Sign up to alerts

Abstract

Krill habitats in the Southern Ocean are impacted by changing climate conditions, reduced sea ice and rising temperatures. These changes, in turn, affect krill occurrence, physiology and behaviour, which could have ecosystem impacts. In this Review, we examine climate change impacts on Antarctic krill and the potential implications for the Southern Ocean ecosystem. Since the 1970s, there have been apparent reductions in adult population density and the occurrence of very dense swarms in the northern Southwest Atlantic. These changes were associated with latitudinal and longitudinal rearrangement of population distribution — including a poleward contraction in the Southwest Atlantic — and were likely driven by ocean warming, sea-ice reductions and changes in the quality of larval habitats. As swarms are targeted by fishers and predators, this contraction could increase fishery–predator interactions, potentially exacerbating risk to already declining penguin populations and recovering whale populations. These risks require urgent mitigation measures to be developed. A circumpolar monitoring network using emerging technologies is needed to augment existing surveys and better record the shifts in krill distribution.

Key points

  • The massive abundance and swarming behaviour of Antarctic krill makes them the primary prey for numerous Antarctic megafauna and important mediators of biogeochemical cycling in the Southern Ocean, particularly in processes that enhance carbon sequestration.

  • Analyses of an existing dataset collectively support southward habitat contraction in the Southwest Atlantic sector, likely due to ocean warming and hence changing sea-ice dynamics, including the reduction of sea ice.

  • Changes in habitat conditions affect krill physiology, which in turn could be accompanied by changes in their behaviour, such as changes in distribution and swarm size and frequency.

  • Reduction in krill biomass is potentially associated with a reduction in the number of swarms. Such changes will have implications for predator–prey relationships and interactions with the fishery.

  • An overall reduction in krill biomass and abundance could decrease the contribution of krill to the biological carbon pump in the region, with fewer faecal pellets, carcasses and moults sinking to the deep ocean, thereby reducing this important route of carbon sequestration.

  • Future studies must aim for deeper understanding of the energy budget in krill as it pertains to their swarming behaviour, and should deepen our understanding of climate change impacts on the pelagic lifestyle of krill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Krill life history.
Fig. 2: Circumpolar distribution of Antarctic krill.
Fig. 3: Range shift in the Southwest Atlantic sector.
Fig. 4: Krill behaviour during winter under sea ice.
Fig. 5: Key objectives for Southern Ocean krill research.

Similar content being viewed by others

References

  1. Tarling, G. A. & Fielding, S. in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 279–319 (Springer, 2016).

  2. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  Google Scholar 

  3. Nicol, S. & Foster, J. in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 387–422 (Springer, 2016).

  4. Cavanagh, R. D. et al. Future risk for Southern Ocean ecosystem services under climate change. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.615214 (2021).

  5. Everson, I. in Fish and Aquatic Resources Series Vol. 6, Krill Biology, Ecology and Fisheries (ed. Everson, I.) 202–227 (Blackwell Science, 2000).

  6. Burns, A. L. et al. Self-organization and information transfer in Antarctic krill swarms. Proc. R. Soc. B 289, 20212361 (2022).

    Article  Google Scholar 

  7. von Bodungen, B. Phytoplankton growth and krill grazing during spring in the Bransfield Strait, Antarctica—implications from sediment trap collections. Polar Biol. 6, 153–160 (1986).

    Article  Google Scholar 

  8. Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun. 10, 889 (2019).

    Article  Google Scholar 

  9. Gleiber, M. R., Steinberg, D. K. & Ducklow, H. W. Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 471, 23–36 (2012).

    Article  Google Scholar 

  10. Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish. 11, 203–209 (2011).

    Article  Google Scholar 

  11. Schmidt, K. et al. Zooplankton gut passage mobilizes lithogenic iron for ocean productivity. Curr. Biol. 26, 2667–2673 (2016).

    Article  Google Scholar 

  12. Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 1–13 (2019).

    Google Scholar 

  13. Stammerjohn, S., Massom, R., Rind, D. & Martinson, D. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophys. Res. Lett. 39, L06501 (2012).

    Article  Google Scholar 

  14. Flores, H. et al. The association of Antarctic krill Euphausia superba with the under-ice habitat. PLoS ONE 7, e31775 (2012).

    Article  Google Scholar 

  15. Kawaguchi, S. et al. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat. Clim. Change 7, 843–847 (2013).

    Article  Google Scholar 

  16. Melbourne-Thomas, J. et al. Under ice habitats for Antarctic krill larvae: could less mean more under climate warming? Geophys. Res. Lett. 43, 10322–10327 (2016).

    Article  Google Scholar 

  17. Johnston, N. M. et al. Status, change, and futures of zooplankton in the Southern Ocean. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2021.624692 (2022).

  18. Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).

    Article  Google Scholar 

  19. Miller, D. G. M. & Hampton, I. Biology and ecology of the Antarctic Krill (Euphausia superba Dana): a review. BIOMASS Scientific Ser. 9, 1–166 (1989).

  20. Watkins, J. L. in Krill Biology, Ecology and Fisheries (ed. Everson, I.) 80–201 (Blackwell Science, 2000).

  21. Hamner, W. M. & Hamner, P. P. Behavior of Antarctic krill (Euphausia superba): schooling, foraging, and antipredatory behavior. Can. J. Fish. Aquat. Sci. 57, 192–202 (2000).

    Article  Google Scholar 

  22. Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, R. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

    Article  Google Scholar 

  23. Cox, M. J. et al. No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. J. Crustac. Biol. 38, 656–661 (2018).

    Google Scholar 

  24. Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).

    Article  Google Scholar 

  25. Candy, S. G. Long-term trend in mean density of Antarctic krill (Euphausia superba) uncertain. Annu. Res. Rev. Biol. 36, 27–43 (2021).

    Article  Google Scholar 

  26. Hill, S. L., Atkinson, A., Pakhomov, E. A. & Siegel, V. Evidence for a decline in the population density of Antarctic krill Euphausia superba Dana, 1850 still stands. A comment on Cox et al. J. Crustac. Biol. 39, 316–322 (2019).

    Article  Google Scholar 

  27. Cox, M. J. et al. Clarifying trends in the density of Antarctic krill Euphausia superba Dana, 1850 in the South Atlantic. A response to Hill et al. J. Crustac. Biol. 39, 323–327 (2019).

    Article  Google Scholar 

  28. Loeb, V. et al. Effects of sea ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).

    Article  Google Scholar 

  29. Marr, J. W. S. The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discov. Rep. 32, 33–464 (1962).

    Google Scholar 

  30. Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).

    Article  Google Scholar 

  31. Siegel, V. & Watkins. J. in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 21–100 (Springer, 2016).

  32. Cuzin-Roudy, J. et al. in Biogeochemical Atlas of the Southern Ocean (eds De Broyer, C. & Koubbi, P.) 309–320 (SCAR, 2014).

  33. Nicol, S., Constable, A. J. & Pauly, T. Estimates of circumpolar abundance of Antarctic krill based on recent acoustic density measurements. CCAMLR Sci. 7, 87–99 (2000).

    Google Scholar 

  34. Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Sea Res. I 56, 727–740 (2009).

    Article  Google Scholar 

  35. Hewitt, R. P. et al. Biomass of Antarctic krill in the Scotia Sea in January/February 2000 and its use in revising an estimate of precautionary yield. Deep-Sea Res. II 51, 1215–1236 (2004).

    Google Scholar 

  36. Krafft, B. A. et al. Standing stock of Antarctic krill (Euphausia superba Dana, 1850) (Euphausiacea) in the Southwest Atlantic sector of the Southern Ocean, 2018–19. J. Crust. Biol. https://doi.org/10.1093/jcbiol/ruab046 (2021).

  37. Yang, G. et al. Changing circumpolar distributions and isoscapes of Antarctic krill: Indo-Pacific habitat refuges counter long-term degradation of the Atlantic sector. Limnol. Oceanogr. 66, 272–287 (2020).

    Article  Google Scholar 

  38. Kawaguchi, S. et al. Krill demography and large scale distribution in the Western Indian Ocean sector of the Southern Ocean (CCAMLR Division 58.4.2) in austral summer of 2006. Deep-Sea Res. II 57, 934–947 (2010).

    Google Scholar 

  39. Cox, M. J. et al. Two scales of distribution and biomass of Antarctic krill (Euphausia superba) in the eastern sector of the CCAMLR Division 58.4.2 (55° E to 80° E). PLoS ONE 17, e0271078 (2022).

    Article  Google Scholar 

  40. Clarke, A. & Tyler, P. A. Adult Antarctic krill feeding at abyssal depth. Curr. Biol. 18, 282–285 (2008).

    Article  Google Scholar 

  41. Schmidt, K. et al. Seabed foraging by Antarctic krill: implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron. Limnol. Oceanogr. 56, 1411–1428 (2011).

    Article  Google Scholar 

  42. Kane, M. K., Yopak, R., Roman, C. & Menden-Deuer, S. Krill motion in the Southern Ocean: quantifying in situ krill movement behaviors and distributions during the late austral autumn and spring. Limnol. Oceanogr. 63, 2839–2857 (2018).

    Article  Google Scholar 

  43. Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep-Sea Res. I 101, 54–70 (2015).

    Article  Google Scholar 

  44. Ross, R. M. et al. Trends, cycles, interannual variability for three pelagic species west of the Antarctic Peninsula 1993–2008. Mar. Ecol. Prog. Ser. 515, 11–32 (2014).

    Article  Google Scholar 

  45. Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J. Mar. Sci. 71, 2578–2588 (2014).

    Article  Google Scholar 

  46. Reiss, C. S., Cossio, A. M., Loeb, V. & Demer, D. A. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996–2006. ICES J. Mar. Sci. 65, 497–508 (2008).

    Article  Google Scholar 

  47. Pauly, T., Nicol, S., Higginbottom, I., Hosie, G. & Kitchener, J. Distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica (80–150° E) during the austral summer of 1995/1996. Deep-Sea Res. II 47, 2465–2488 (2000).

    Google Scholar 

  48. Jarvis, T., Kelly, N., Kawaguchi, S., Van Wijk, E. & Nicol, S. Acoustic characterisation of the broad-scale distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica (30-80° E) in January–March 2006. Deep-Sea Res. II 57, 916–933 (2010).

    Google Scholar 

  49. Cox, M. J., Watkins, J. L., Reid, K. & Brierley, A. S. Spatial and temporal variability in the structure of aggregations of Antarctic krill (Euphausia superba) around South Georgia, 1997–1999. ICES J. Mar. Sci. 68, 489–498 (2011).

    Article  Google Scholar 

  50. Atkinson, A. et al. KRILLBASE: a circumpolar database of Antarctic krill and salp numerical densities, 1926–2016. Earth Syst. Sci. Data 9, 193–210 (2017).

    Article  Google Scholar 

  51. Reiss, C. S. in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 101–144 (Springer, 2016).

  52. Atkinson, A. et al. Stepping stones towards Antarctica: switch to southern spawning grounds explains an abrupt range shift in krill. Glob. Change Biol. 28, 1359–1375 (2022).

    Article  Google Scholar 

  53. Ryabov, A. B., de Roos, A. M., Meyer, B., Kawaguchi, S. & Blasius, B. Competition-induced starvation drives large-scale population cycles in Antarctic krill. Nat. Ecol. Evol. 1, 0177 (2017).

    Article  Google Scholar 

  54. Ichii, T. et al. Impact of the climate regime shift around 2000 on recruitment of Antarctic krill at the Antarctic Peninsula and South Georgia. Prog. Oceanogr. 213, 103020 (2023).

    Article  Google Scholar 

  55. Saba, G. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318 (2014).

    Article  Google Scholar 

  56. Schofield, O. et al. Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula. Deep-Sea Res. I 124, 42–54 (2017).

    Article  Google Scholar 

  57. Siegel, V. & Loeb, V. Recruitment of Antarctic krill Euphausia superba and possible causes for its variability. Mar. Ecol. Prog. Ser. 123, 45–56 (1995).

    Article  Google Scholar 

  58. Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X. & Rind, C. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. 113, C03S90 (2008).

    Article  Google Scholar 

  59. Yuan, X. ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarctic Sci. 16, 415–425 (2004).

    Article  Google Scholar 

  60. Thompson, D. W. J. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: month-to-month variability. Am. Meteorol. Soc. 13, 1000–1016 (2000).

    Google Scholar 

  61. Bernard, K. S. et al. The contribution of ice algae to the winter energy budget of juvenile Antarctic krill in years with contrasting sea ice conditions. ICES J. Mar. Sci. 76, 206–216 (2018).

    Article  Google Scholar 

  62. Steinke, K. B., Bernard, K. S., Ross, R. M. & Quetin, L. B. Environmental drivers of the physiological condition of mature female Antarctic krill during the spawning season: implications for krill recruitment. Mar. Ecol. Prog. Ser. 669, 65–82 (2021).

    Article  Google Scholar 

  63. Meyer, B. et al. Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation. Commun. Earth Environ. https://doi.org/10.1038/s43247-020-00026-1 (2020).

  64. Kawaguchi, S. in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 225–246 (Springer, 2016).

  65. Walsh, J., Reiss, C. S. & Watters, G. M. Flexibility in Antarctic krill (Euphausia superba) decouples diet and recruitment from overwinter sea-ice conditions in the northern Antarctic Peninsula. Mar. Ecol. Prog. Ser. 642, 1–19 (2020).

    Article  Google Scholar 

  66. David, C. L. et al. Sea-ice habitat minimizes grazing impact and predation risk for larval Antarctic krill. Polar Biol. 44, 1175–1193 (2021).

    Article  Google Scholar 

  67. Meyer, B. et al. Physiology, growth and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnol. Oceanogr. 54, 1595–1614 (2009).

    Article  Google Scholar 

  68. Veytia, D. et al. Overwinter sea-ice characteristics important for Antarctic krill recruitment in the Southwest Atlantic. Ecol. Indic. 129, 107934 (2021).

    Article  Google Scholar 

  69. Meyer, B. et al. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat. Ecol. Evol. 1, 1853–1861 (2017).

    Article  Google Scholar 

  70. Meyer, B. The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective. Polar Biol. 35, 15–37 (2011).

    Article  Google Scholar 

  71. Quetin, L. B. et al. Growth of larval krill, Euphausia superba, in fall and winter west of the Antarctic Peninsula. Mar. Biol. 143, 833–843 (2003).

    Article  Google Scholar 

  72. Quetin, L. B. & Ross, R. M. in Smithonian at the Poles, Contribution to International Polar Year Science (eds Krupnik I., Lang, M. A. & Miller, E. S.) 285–298 (Smithonian Institute Scholarly Press, 2009).

  73. Bernard, K. S., Steinke, K. B. & Fontana, J. M. Winter condition, physiology, and growth potential of juvenile Antarctic krill. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.990853 (2022).

  74. Steinke, K. B., Bernard, K. S., Fontana, J. M., Copeman, L. A. & Garcia, L. M. The energetic cost of early reproductive development in juvenile Antarctic krill at the western Antarctic Peninsula. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.1009385 (2022).

  75. Menshenina, L. L. & Melnikov, I. A. Under-ice zooplankton of the western Weddell Sea. Proc. NIPR Symp. Polar Biol. 8, 126–138 (1995).

    Google Scholar 

  76. Melnikov, I. A. Winter production of sea ice algae in the western Weddell Sea. J. Mar. Syst. 17, 195–205 (1998).

    Article  Google Scholar 

  77. Thomas, D. N. & Dieckmann, G. S. Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology (Wiley, 2003).

  78. Quetin, L. B., Ross, R. M., Rristen, C. H. & Vernet, M. Ecological responses of Antarctic krill to environmental variability: can we predict the future? Antarctic Sci. 19, 253–266 (2007).

    Article  Google Scholar 

  79. Deppeler, S. & Davidson, A. Southern Ocean phytoplankton in a changing climate. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00040 (2017).

  80. Kawaguchi, S., Nicol, S. & Press, P. Direct effects of climate change on the Antarctic krill fishery. Fish. Manag. Ecol. 16, 424–427 (2009).

    Article  Google Scholar 

  81. Biskontin, A. et al. Functional characterization of the circadian clock in the Antarctic krill, Euphausia superba. Sci. Rep. 18, 17742 (2017).

    Article  Google Scholar 

  82. Piccolin, F. et al. Photoperiodic modulation of circadian functions in Antarctic krill Euphausia superba Dana, 1850 (Euphausiacea). J. Crustac. Biol. 38, 707–715 (2018).

    Google Scholar 

  83. Höring, F. et al. Seasonal gene expression profiling of Antarctic krill in three different latitudinal regions. Mar. Genomics 56, 100806 (2020).

    Article  Google Scholar 

  84. Parkinson, C. L. & DiGirolamo, N. E. Sea ice extents continue to set new records: Arctic, Antarctic, and global results. Remote. Sens. Environ. 267, 112753 (2021).

    Article  Google Scholar 

  85. Fu, S.-J., Dong, Y.-W. & Killen, S. S. Aerobic scope in fishes with different lifestyles and across habitats: trade-offs among hypoxia tolerance, swimming performance and digestion. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 272, 111277 (2022).

    Article  Google Scholar 

  86. Portner, H. O. & Farrel, A. P. Physiology and climate change. Science 322, 690–692 (2008).

    Article  Google Scholar 

  87. Guderley, H. & Pörtner, H. O. Metabolic power budgeting and adaptive strategies in zoology: examples from scallops and fish. Can. J. Zool. 88, 753–763 (2010).

    Article  Google Scholar 

  88. Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).

    Article  Google Scholar 

  89. Paschke, K. et al. Comparison of aerobic scope for metabolic activity in aquatic ectotherms with temperature related metabolic stimulation: a novel approach for aerobic power budget. Front. Physiol. 9, 1438 (2018).

    Article  Google Scholar 

  90. Tarling, G. A. Routine metabolism of Antarctic krill (Euphausia superba) in South Georgia waters: absence of metabolic compensation at its range edge. Mar. Biol. 167, 108 (2020).

    Article  Google Scholar 

  91. Michael, K., Suberg, L. A., Wessels, W., Kawaguchi, S. & Meyer, B. Facing Southern Ocean warming: temperature effects on whole animal performance of Antarctic krill (Euphausia superba). Zoology 146, 125910 (2021).

    Article  Google Scholar 

  92. Atkinson, A. et al. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnol. Oceanogr 51, 973–987 (2006).

    Article  Google Scholar 

  93. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).

    Article  Google Scholar 

  94. Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    Article  Google Scholar 

  95. Saba, G. K., Schofield, O., Torres, J. J., Ombres, E. H. & Steinberg, D. K. Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO2). PLoS ONE 7, e52224 (2012).

    Article  Google Scholar 

  96. Kawaguchi, S. et al. Will krill fare well under Southern Ocean acidification? Biol. Lett. 7, 288–291 (2011).

    Article  Google Scholar 

  97. Ericson, J. A. et al. Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult Antarctic krill. Sci. Rep. 9, 12375 (2019).

    Article  Google Scholar 

  98. Ericson, J. A. et al. Adult Antarctic krill proves resilient in a simulated high CO2 ocean. Commun. Biol. 1, 190 (2018).

    Article  Google Scholar 

  99. Yang, G., King, R. A. & Kawaguchi, S. Behavioural responses of Antarctic krill (Euphausia superba) to CO2-induced ocean acidification: would krill really notice? Polar Biol. 41, 727–732 (2018).

    Article  Google Scholar 

  100. Saba, G. K., Bockus, A. B., Shaw, C. T. & Seibel, B. A. Combined effects of ocean acidification and elevated temperature on feeding, growth, and physiological processes of Antarctic krill Euphausia superba. Mar. Ecol. Prog. Ser. 665, 1–18 (2021).

    Article  Google Scholar 

  101. Mangel, M. & Nicol, S. Krill and the unity of biology. Can. J. Fish. Aquat. Sci. 57, 1–5 (2000).

    Article  Google Scholar 

  102. Nicol, S. Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience 56, 111–120 (2006).

    Article  Google Scholar 

  103. Hamner, W. M., Hamner, P. P., Strand, S. W. & Gilmer, R. W. Behavior of Antarctic krill, Euphausia superba: chemoreception, feeding, schooling, and molting. Science 220, 433–435 (1983).

    Article  Google Scholar 

  104. Tarling, G. A. et al. Variability and predictability of Antarctic krill swarm structure. Deep-Sea Res. I 56, 1994–2012 (2009).

    Article  Google Scholar 

  105. Nowacek, D. P. et al. Super-aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula. PLoS ONE 6, e19173 (2011).

    Article  Google Scholar 

  106. Miller, E. J. et al. The characteristics of krill swarms in relation to aggregating Antarctic blue whales. Sci. Rep. 9, 16487 (2019).

    Article  Google Scholar 

  107. Lascara, C. M., Hofmann, E. E., Ross, R. M. & Quetin, L. B. Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. Deep-Sea Res. I 46, 951–984 (1999).

    Article  Google Scholar 

  108. Lawson, G. L., Wiebe, P. H., Ashjian, C. J. & Stanton, T. K. Euphausiid distribution along the Western Antarctic Peninsula—part B: distribution of euphausiid aggregations and biomass, and associations with environmental features. Deep-Sea Res. II 55, 432–454 (2008).

    Google Scholar 

  109. Warren, J. D. & Demer, D. A. Abundance and distribution of Antarctic krill (Euphausia superba) nearshore of Cape Shirreff, Livingston Island, Antarctica, during six austral summers between 2000 and 2007. Can. J. Fish. Aquat. Sci. 67, 1159–1170 (2010).

    Article  Google Scholar 

  110. Krafft, B. A. et al. Antarctic krill swarm characteristics in the Southeast Atlantic sector of the Southern Ocean. Mar. Ecol. Prog. Ser. 465, 69–83 (2012).

    Article  Google Scholar 

  111. Cox, M. J., Warren, J., Demer, D. A., Cutter, G. R. & Brierley, A. S. Three-dimensional observations of swarms of Antarctic krill (Euphausia superba) made using a multi-beam echosounder. Deep-Sea Res. II 57, 508–518 (2010).

    Google Scholar 

  112. Brierley, A. S. & Cox, M. J. Fewer but not smaller schools in declining fish and krill populations. Curr. Biol. 25, 75–79 (2015).

    Article  Google Scholar 

  113. Brierley, A. S. & Cox, M. J. Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Curr. Biol. 20, 1758–1762 (2010).

    Article  Google Scholar 

  114. Murphy, E. J., Morris, D. J., Watkins, J. L. & Priddle, J. in Antarctic Ocean and Resources Variability (ed. Sahrhage, D.) 120–130 (Springer, 1988).

  115. Cresswell, K. A., Tarling, G. A. & Burrows, M. T. Behaviour affects local-scale distributions of Antarctic krill around South Georgia. Mar. Ecol. Prog. Ser. 343, 193–206 (2007).

    Article  Google Scholar 

  116. Cresswell, K. A. et al. Diel vertical migration of Antarctic krill (Euphausia superba) is flexible during advection across the Scotia Sea. J. Plankton Res. 31, 1265–1281 (2009).

    Article  Google Scholar 

  117. Riaz, J., Bestley, S., Wotherspoon, S., Cox, M. J. & Emmerson, L. Spatial link between Adélie penguin foraging effort and krill swarm abundance and distribution. Front. Mar. Sci. 10, 63 (2023).

    Article  Google Scholar 

  118. O’Brien, D. P. Description of escape responses of krill (Crustacea: Euhpausiacea), with particular refrence to swarming behavior and the size and proximity of the predator. J. Cruscac. Biol. 7, 449–457 (1987).

    Article  Google Scholar 

  119. Huntley, M. E. & Zhou, M. Influence of animals on turbulence in the sea. Mar. Ecol. Prog. Ser. 273, 65–79 (2004).

    Article  Google Scholar 

  120. Bestley, S. et al. Predicting krill swarm characteristics important for marine predators foraging off East Antarctica. Ecography 41, 996–1012 (2018).

    Article  Google Scholar 

  121. Hofmann, E. E., Haskell, A. G. E., Klinck, J. M. & Lascara, C. M. Lagrangian modelling studies of Antarctic krill (Euphausia superba) swarm formation. ICES J. Mar. Sci. 61, 617–631 (2004).

    Article  Google Scholar 

  122. Siegel, V. in Antarctic Ocean and Resources Variability (ed. Sahrhage, D.) 219–230 (Springer, 1988).

  123. Kanda, K., Takagi, K. & Seki, Y. Movement of the larger swarms of Antarctic krill Euphausia superba population off Enderby Land during 1976–1977 season. J. Tokyo Univ. Fish. 68, 24–42 (1982).

    Google Scholar 

  124. Tarling, G. A. & Johnson, M. L. Satiation gives krill that sinking feeling. Curr. Biol. 16, R83–R84 (2006).

    Article  Google Scholar 

  125. Bernard, K. S. et al. Factors that affect the nearshore aggregations of Antarctic krill in a biological hotspot. Deep-Sea Res. I 126, 139–147 (2017).

    Article  Google Scholar 

  126. Ritz, D. A. in Advances in Marine Biology Vol 30 (eds Blaxter, J. H. S. & Southward, A. J.) 155–216 (Academic, 1994).

  127. Ritz, D. A. Is social aggregation in aquatic crustaceans a strategy to conserve energy? Can. J. Fish. Aquat. Sci. 57, 59–67 (2000).

    Article  Google Scholar 

  128. Swadling, K. M., Ritz, D. A., Nicol, S., Osborn, J. E. & Gurney, L. J. Respiration rate and cost of swimming for Antarctic krill, Euphausia superba, in large groups in the laboratory. Mar. Biol. 146, 1169–1175 (2005).

    Article  Google Scholar 

  129. Murphy, D. W. et al. The three dimensional spatial structure of Antarctic krill schools in the laboratory. Sci. Rep. 9, 381 (2019).

    Article  Google Scholar 

  130. Tarling, G. A. & Thorpe, S. E. Oceanic swarms of Antarctic krill perform satiation sinking. Proc. Royal Soc. B 284, 20172015 (2017).

    Article  Google Scholar 

  131. Goldbogen, J. A. et al. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131–146 (2011).

    Article  Google Scholar 

  132. Murphy, E. J., Thorpe, S. E., Watkins, J. L. & Hewitt, R. Modeling the krill transport pathways in the Scotia Sea: spatial and environmental connections generating the seasonal distribution of krill. Deep-Sea Res. II 51, 1435–1456 (2004).

    Google Scholar 

  133. Gaten, E. et al. Is vertical migration in Antarctic krill (Euphausia superba) influenced by an underlying circadian rhythm? J. Genet. 87, 473–483 (2008).

    Article  Google Scholar 

  134. Schmidt, K., Atkinson, A., Venables, H. J. & Pond, D. W. Early spawning of Antarctic krill in the Scotia Sea is fuelled by “superfluous” feeding on non-ice associated phytoplankton blooms. Deep-Sea Res. II 59–60, 159–172 (2012).

    Google Scholar 

  135. Salmerón, N. et al. Contrasting environmental conditions precluded lower availability of Antarctic krill afecting breeding chinstrap penguins in the Antarctic Peninsula. Sci. Rep. 13, 5265 (2023).

    Article  Google Scholar 

  136. Clarke, L. J., Suter, L., King, R., Bisset, A. & Deagle, B. E. Antarctic krill are reservoirs for distinct Southern Ocean microbial communities. Front. Microbiol. 9, 3226 (2019).

    Article  Google Scholar 

  137. Arístegui, J., Duarte, C. M., Reche, I. & Gómez-Pinchetti, J. L. Krill excretion boosts microbial activity in the Southern Ocean. PLoS ONE 9, e89391 (2014).

    Article  Google Scholar 

  138. Manno, C., Fielding, S., Stowasser, G., Murphy, E. J. & Thorpe, S. E. Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean. Nat. Commun. https://doi.org/10.1038/s41467-020-19956-7 (2020).

  139. Smith, C. R., Mincks, S. & DeMaster, D. J. A synthesis of bentho-pelagic coupling on the Antarctic shelf: food banks, ecosystem inertia and global climate change. Deep-Sea Res. II 53, 875–894 (2006).

    Google Scholar 

  140. Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S. & Geissler, P. A. Variable food absorption by Antarctic krill: relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets. Deep-Sea Res. II 59-60, 147–158 (2012).

    Google Scholar 

  141. Trinh, R., Ducklow, H. W., Steinberg, D. K. & Fraser, W. R. Krill body size drives particulate organic carbon export in West Antarctica. Nature 618, 526–530 (2023).

    Article  Google Scholar 

  142. Cavan, E. L., Kawaguchi, S. & Boyd, P. W. Implications for the mesopelagic microbial gardening hypothesis as determined by experimental fragmentation of Antarctic krill fecal pellets. Ecol. Evol. 11, 1023–1036 (2021).

    Article  Google Scholar 

  143. Gibson, J. A. E., Trull, T., Nichols, P. D., Summons, R. E. & McMinn, A. Sedimentation of 13C-rich organic matter from Antarctic sea-ice algae: a potential indicator of past sea-ice extent. Geology 27, 331–334 (1999).

    Article  Google Scholar 

  144. Hernández-León, S., Portillo-Hahnefeld, A., Almeida, C., Bécognée, P. & Moreno, I. Diel feeding behaviour of krill in the Gerlache Strait, Antarctica. Mar. Ecol. Prog. Ser. 223, 235–242 (2001).

    Article  Google Scholar 

  145. Rogers, A. D. et al. Antarctic futures: an assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Annu. Rev. Mar. Sci. 12, 87–120 (2020).

    Article  Google Scholar 

  146. Nicol et al. Krill (Euphausia superba) abundance and Adélie penguin (Pygoscelis adeliae) breeding performance in the waters off the Béchervaise Island colony, East Antarctica in 2 years with contrasting ecological conditions. Deep-Sea Res. II 55, 540–557 (2008).

    Google Scholar 

  147. Emmerson, L., Southwell, C., Clarke, J., Tierney, M. & Kerry, K. Adélie penguin response parameters signal reduced prey accessibility: implications for predator–prey response curves. Mar. Biol. 162, 1187–1200 (2015).

    Article  Google Scholar 

  148. Pallin et al. A surplus no more? Variation in krill availability impacts reprocudtive rates of Antarctic baleen whales. Glob. Change Biol. 29, 2108–2121 (2023).

    Article  Google Scholar 

  149. Watters, G. M., Hinke, J. T. & Reiss, C. S. Long-term observations from Antarctica demonstrate that mismatched scales of fisheries management and predator–prey interaction lead to erroneous conclusions about precaution. Sci. Rep. 10, 2314 (2020).

    Article  Google Scholar 

  150. Klein, E. S., Hill, S. L., Hinke, J. T., Phillips, T. & Watters, G. M. Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. PLoS ONE 13, e0191011 (2018).

    Article  Google Scholar 

  151. Groeneveld, J. et al. Blooms of a key grazer in the Southern Ocean—an individual-based model of Salpa thompsoni. Prog. Oceanogr. 185, 102339 (2020).

    Article  Google Scholar 

  152. Pauli, N.-C. et al. Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula. Nat. Commun. 12, 7168 (2021).

    Article  Google Scholar 

  153. Iversen et al. Sinkers or floaters? Contribution from salp pellets to the export flux during large bloom event in the Southern Ocean. Deep-Sea Res. II 138, 116–125 (2017).

    Google Scholar 

  154. Constable, A. J. et al. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob. Change Biol. 20, 3004–3025 (2014).

    Article  Google Scholar 

  155. White, E. R. Minimum time required to detect population trends: the need for long-term monitoring programs. BioScience 69, 40–46 (2019).

    Article  Google Scholar 

  156. Thomas, L. Monitoring long‐term population change: why are there so many analysis methods? Ecology 77, 49–58 (1996).

    Article  Google Scholar 

  157. Smith, R. C. et al. The Palmer LTER: a long-term ecological research program at Palmer Station, Antarctica. Oceanography 8, 77–86 (1995).

    Article  Google Scholar 

  158. Hewitt, R. P., Demer, D. A. & Emery, J. H. An 8-year cycle in krill biomass density inferred from acoustic suveys conducted in the vicinity of the South Shetland Islands during the austral summers of 1991–1992 through 2001–2002. Aquat. Living Resour. 16, 205–213 (2003).

    Article  Google Scholar 

  159. Skarlet, G. et al. Distribution and biomass estimation of Antarctic krill (Euphausia superba) off the South Orkney Islands during 2011–2020. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsad076 (2023).

  160. Conroy, J. A., Reiss, C. S., Gleiber, M. R. & Steinberg, D. K. Linking Antarctic krill larval supply and recruitment along the Antarctic Peninsula. Integr. Comp. Biol. 60, 1386–1400 (2020).

    Article  Google Scholar 

  161. Perry, F. et al. Habitat partitioning in Antarctic krill: spawning hotspots and nursery areas. PLoS ONE 14, e0219325 (2019).

    Article  Google Scholar 

  162. Wiedenmann, J., Cresswell, K. A. & Mangel, M. Connecting recruitment of Antarctic krill and sea ice. Limnol. Oceanogr. 54, 799–811 (2009).

    Article  Google Scholar 

  163. Hill, S. L., Phillips, T. & Atkinson, A. Potential climate change effects on the habitat of Antarctic krill in the Weddell quadrant of the Southern Ocean. PlosONE 8, e72246 (2013).

    Article  Google Scholar 

  164. Piñones, A. & Fedorov, A. V. Projected changes of Antarctic krill habitat by the end of the 21st century. Geophys. Res. Lett. 43, 8580–8589 (2016).

    Article  Google Scholar 

  165. Veytia, D. et al. Circumpolar projections of Antarctic krill growth potential. Nat. Clim. Change 10, 568–575 (2020).

    Article  Google Scholar 

  166. Sylvester, Z. T., Long, M. C. & Brooks, C. M. Detecting climate signals in Southern Ocean krill growth habitat. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.669508 (2021).

  167. Murphy, E. J. et al. Restricted regions of enhanced growth of Antarctic krill in the circumpolar Southern Ocean. Sci. Rep. 7, 14 (2017).

    Article  Google Scholar 

  168. Krumhardt, K. M. et al. Climate drivers of Southern Ocean phytoplankton community composition and potential impacts on higher trophic levels. Front. Mar. Sci. 9, https://doi.org/10.3389/fmars.2022.916140 (2022).

  169. Duncan, R. J. et al. Ocean acidification alters the nutritional value of Antarctic diatoms. N. Phytol. 233, 1813–1827 (2022).

    Article  Google Scholar 

  170. Lin, S., Zhao, L. & Feng, J. Predicted changes in the distribution of Antarctic krill in the Cosmonaut Sea under future climate change scenarios. Ecol. Indic. 142, 109234 (2022).

    Article  Google Scholar 

  171. Hill, S. L., Keeble, K., Atkinson, A. & Murphy, E. J. A foodweb model to explore uncertainties in the South Georgia shelf pelagic ecosystem. Deep-Sea Res. II 59–60, 237–252 (2012).

    Google Scholar 

  172. Hückstädt, L. A. et al. Projected shifts in the foraging habitat of crabeater seals along the Antarctic Peninsula. Nat. Clim. Change 10, 472–477 (2020).

    Article  Google Scholar 

  173. Tulloch, V. J. D., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).

    Article  Google Scholar 

  174. Nicol, S. et al. Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent. Nature 406, 504–507 (2000).

    Article  Google Scholar 

  175. Shao, C. et al. The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights. Cell 186, 1279–1294.e19 (2023).

    Article  Google Scholar 

  176. Santini, L., Benítez‐López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. Assessing the reliability of species distribution projections in climate change research. Diversity Distrib. 27, 1035–1050 (2021).

    Article  Google Scholar 

  177. Bahlburg, D., Thorpe, S. E., Meyer, B., Berger, U. & Murphy, E. J. An intercomparison of models predicting growth of Antarctic krill (Euphausia superba): the importance of recognizing model specificity. PLoS ONE 18, e0286036 (2023).

    Article  Google Scholar 

  178. Green, D. B. et al. Modeling Antarctic krill circumpolar spawning habitat quality to identify regions with potential to support high larval production. Geophys. Res. Lett. https://doi.org/10.1029/2020GL091206 (2021).

  179. Thorpe, S., Tarling, G. & Murphy, E. Circumpolar patterns in Antarctic krill larval recruitment: an environmentally driven model. Mar. Ecol. Prog. Ser. 613, 77–96 (2019).

    Article  Google Scholar 

  180. Bairstow, F. et al. Krill biomass estimation: sampling and measurement variability. Front. Mar. Sci. 9, 903035 (2022).

    Article  Google Scholar 

  181. Reiss, C. S., Cossio, A. M., Walsh, J., Cutter, G. R. & Watters, G. M. Glider-based estimates of meso-zooplankton biomass density: a fisheries case study on antarctic krill (Euphausia superba) around the northern Antarctic Peninsula. Front. Mar. Sci. 8, 604043 (2021).

    Article  Google Scholar 

  182. Kinzey, D., Cossio, A., Reiss, C. & Watters, G. M. Acoustic sampling of Antarctic krill with simulated underwater buoyancy gliders: does the sawtooth dive pattern work? Front. Mar. Sci. 9, 2699 (2022).

    Article  Google Scholar 

  183. Saunders, R. A. et al. Inter-annual variability in the density of Antarctic krill (Euphausia superba) at South Georgia, 2002–2005: within-year variation provides a new framework for interpreting previous ‘annual’ estimates of krill density. CCAMLR Sci. 14, 27–41 (2007).

    Google Scholar 

  184. Cisewski, B. & Strass, V. H. Acoustic insights into the zooplankton dynamics of the eastern Weddell Sea. Prog. Oceanogr. 144, 62–92 (2016).

    Article  Google Scholar 

  185. Cutter, G. R., Reiss, C. S., Nylund, S. & Watters, G. M. Antarctic krill biomass and flux measured using wideband echosounders and acoustic Doppler current profilers on submerged moorings. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.784469 (2022).

  186. Macintosh, N. A. Distribution of post-larval krill in the Antarctic. Discov. Rep. 36, 95–156 (1973).

    Google Scholar 

  187. Godlewska, M. Vertical migrations of krill (Euphausia superba Dana). Pol. Arch. Hydrobiol. 43, 9–63 (1996).

    Google Scholar 

  188. Willis, J. Whales maintained a high abundance of krill; both are ecosystem engineers in the Southern Ocean. Mar. Ecol. Prog. Ser. 513, 51–69 (2014).

    Article  Google Scholar 

  189. Belcher, A. et al. Experimental determination of reflectance spectra of Antarctic krill (Euphausia superba) in the Scotia Sea. Antarct. Sci. https://doi.org/10.1017/S0954102021000262 (2021).

  190. Suter, L. et al. Environmental DNA of Antarctic krill (Euphausia superba): measuring DNA fragmentation adds a temporal aspect to quantitative surveys. Environmental DNA https://doi.org/10.1002/edn3.394 (2023).

  191. Kane, M. K., Atkinson, A. & Menden-Deuer, S. Lowered cameras reveal hidden behaviors of Antarctic krill. Curr. Biol. 31, R237–R238 (2021).

    Article  Google Scholar 

  192. Kawaguchi, S., Kilpatrick, R., Roberts, L., King, R. A. & Nicol, S. Ocean-bottom krill sex. J. Plankton Res. 33, 1134–1138 (2011).

    Article  Google Scholar 

  193. Guihen, D., Fielding, S., Murphy, E. J., Heywood, K. J. & Griffiths, G. An assessment of the use of ocean gliders to undertake acoustic measurements of zooplankton: the distribution and density of Antarctic krill (Euphausia superba) in the Weddell Sea. Limnol. Oceanogr. Methods 12, 373–389 (2014).

    Article  Google Scholar 

  194. Urmy, S. S., De Robertis, A. & Bassett, C. A Bayesian inverse approach to identify and quantify organisms from fisheries acoustic data. ICES J. Mar. Sci. 0, 1–17 (2023).

    Google Scholar 

  195. Watkins, J. L. et al. The use of fishing vessels to provide acoustic data on the distribution and abundance of Antarctic krill and other pelagic species. Fish. Res. 178, 93–100 (2016).

    Article  Google Scholar 

  196. Taki, K., Hayashi, T. & Naganobu, M. Characteristics of seasonal variation in diurnal vertical migration and aggregation of Antarctic krill (Euphausia superba) in the Scotia Sea, using Japanese fishery data. CCAMLR Sci. 12, 163–172 (2005).

    Google Scholar 

  197. Ichii, T. et al. Body length-dependent diel vertical migration of Antarctic krill in relation to food availability and predator avoidance in winter at South Georgia. Mar. Ecol. Prog. Ser. 654, 53–63 (2020).

    Article  Google Scholar 

  198. Bahlburg, D. et al. Plasticity and seasonality of the vertical migration behaviour of Antarctic krill using acoustic data from fishing vessels. Royal Soc. Open Sci. https://doi.org/10.1098/rsos.230520 (2023).

  199. Miller, D. G. M. & Agnew, D. in Krill Biology, Ecology and Fisheries (ed. Everson I.) 300–337 (Blackwell Science, 2000).

  200. McBride, M. M. et al. Antarctic krill Euphausia superba: spatial distribution, abundance, and management of fisheries in a changing climate. Mar. Ecol. Prog. Ser. 668, 185–214 (2021).

    Article  Google Scholar 

  201. Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 568, 1–16 (2017).

    Article  Google Scholar 

  202. Clearly, A., Durbin, E. G., Casas, M. C. & Zhou, M. Winter distribution and size structure of Antarctic krill Euphausia superba populations in-shore along the West Antarctic Peninsula. Mar. Ecol. Prog. Ser. 552, 115–129 (2016).

    Article  Google Scholar 

  203. Kawaguchi, S., Nicol, S., Taki, K. & Naganobu, M. Fishing ground selection in the Antarcic krill fishery: trends in patterns across years, seasons and nations. CCAMLR Sci. 13, 117–141 (2006).

    Google Scholar 

  204. Kawaguchi, S. & Candy, S. G. Quantifying movement behaviour of vessels in the Antarctic krill fishery. CCAMLR Sci. 16, 131–148 (2009).

    Google Scholar 

  205. Kawaguchi, S. & Nicol, S. in Fisheries and Aquaculture (eds Lovrich, G. & Thiel, M.) 137–158 (Oxford Univ. Press, 2020); https://doi.org/10.1093/oso/9780190865627.003.0006.

  206. Ryan, C. et al. Commercial krill fishing within a foraging supergroup of fin whales in the Southern Ocean. Ecology 104, e4002 (2023).

    Article  Google Scholar 

  207. Heywood, B., Brierley, A. & Gull, S. A quantified Bayesian maximum entropy estimate of Antarctic krill abundance across the Scotia Sea and in small-scale management units from the CCAMLR-2000 survey. CCAMLR Sci. 13, 97–116 (2006).

    Google Scholar 

  208. Brierley, A. S. et al. Use of moored acoustic instruments to measure short-term variability in abundance of Antarctic krill. Limnol. Oceanogr. Methods 4, 18–29 (2006).

    Article  Google Scholar 

  209. SC-CAMLR Report of the 41st Meeting of the Scientific Committee (Commission for the Conservation of Antarctic Marine Living Resources, 2022).

  210. Trathan, P. N., Everson, I., Miller, D. G. M., Watkins, J. L. & Murphy, E. J. Krill biomass in the Atlantic. Nature 373, 201–202 (1995).

    Article  Google Scholar 

  211. Fielding, S., Watkins, J. L., Collins, M. A., Enderlein, P. & Venables, H. J. Acoustic determination of the distribution of fish and krill across the Scotia Sea in spring 2006, summer 2008 and autumn 2009. Deep-Sea Res. Part II: Trop. Stud. Oceangr. 59–60, 173–188 (2012).

    Article  Google Scholar 

  212. SC-CAMLR Report of the 38th Meeting of the Scientific Committee (Commission for the Conservation of Antarctic Marine Living Resources, 2019).

  213. Meyer, B. & Kawaguchi, S. Antarctic marine life under pressure. Science 378, 6617 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

S.K. and M.J.C. were supported by the Australian Antarctic Program and received grant funding from the Australian Government as part of the Antarctic Science Collaboration Initiative programme. The contribution by A.A. was supported by the World Wide Fund for Nature (WWF) and the European Space Agency (ESA) project ‘Biodiversity in the Open Ocean: Mapping, Monitoring and Modelling’ (BOOMS, no. 4000137125/22/I-DT). S.L.H. was supported by the Natural Environment Research Council (NERC) British Antarctic Survey (BAS) ALI-Science Southern Ocean Ecosystems project. D.B. was supported by the German Research Foundation (DFG; grant number 411096565). E.L.C. was supported by an Imperial College Research Fellowship and the WWF. We thank G. Yang for providing data for Fig. 2, and S. McCormack for ideas and input on the designs of Figs. 14 and 5.

Author information

Authors and Affiliations

Authors

Contributions

S.K. led the overall conceptual design, led the activity and coordinated the writing. All authors discussed the concepts presented and significantly contributed to the writing.

Corresponding author

Correspondence to So Kawaguchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Andrea Piñones, Rebecca Trinh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawaguchi, S., Atkinson, A., Bahlburg, D. et al. Climate change impacts on Antarctic krill behaviour and population dynamics. Nat Rev Earth Environ 5, 43–58 (2024). https://doi.org/10.1038/s43017-023-00504-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00504-y

  • Springer Nature Limited

Navigation