Skip to main content

Advertisement

Log in

Earth’s sediment cycle during the Anthropocene

  • Review Article
  • Published:

From Nature Reviews Earth & Environment

View current issue Sign up to alerts

Abstract

The global sediment cycle is a fundamental feature of the Earth system, balancing competing factors such as orogeny, physical–chemical erosion and human action. In this Review, values of the magnitudes of several sources and sinks within the cycle are suggested, although the record remains fragmented with uncertainties. Between 1950 and 2010, humans have transformed the mobilization, transport and sequestration of sediment, to the point where human action now dominates these fluxes at the global scale. Human activities have increased fluvial sediment delivery by 215% while simultaneously decreasing the amount of fluvial sediment that reaches the ocean by 49%, and societal consumption of sediment over the same period has increased by more than 2,500%. Global warming is also substantially affecting the global sediment cycle through temperature impacts (sediment production and transport, sea ice cover, glacial ice ablation and loss of permafrost), precipitation changes, desertification and wind intensities, forest fire extent and intensity, and acceleration of sea-level rise. With progressive improvements in global digital datasets and modelling, we should be able to obtain a comprehensive picture of the impacts of human activities and climate warming.

Key points

  • Sediment production (supply) from anthropogenic soil erosion, construction activities, mineral mining, aggregate mining, and sand and gravel mining from coasts and rivers, has increased by about 467% between 1950 and 2010.

  • Sediment consumption in the Anthropocene, including from reservoir sequestration, highway development and coal and concrete consumption, has increased by about 2,550% between 1950 and 2010.

  • Transport of sediment from land to the coastal ocean (via rivers, wind, coastal erosion, and ice loss) has decreased by 23% between 1950 and 2010, whereas transport of fluvial particulates including organic carbon has decreased by 49% over the same period; offsets include increases in sediment delivery by icebergs and glacial melt.

  • If it were not for sequestration of sediment behind dams, global rivers would have increased their particulate loads by 212% between 1950 and 2010.

  • Anthropocene impacts on the marine sedimentary environment remain poorly characterized but, on the basis of the resuspension of seafloor sediment from trawling, dredging and land reclamation, anthropogenic transport seems to have increased by 780% between 1950 and 2010.

  • The Earth’s present Anthropocene sediment load (net land-to-sea sediment delivery and anthropogenic sediment production) exceeds 300 billion tons (Gt) per year, a mass flux that includes a small (<6%) contribution from natural processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Examples of fluvial sediment loads in the Holocene and Anthropocene.
Fig. 2: Examples of geological categories of sediment delivery to the global ocean.
Fig. 3: Human action dominates the global sediment budget.
Fig. 4: Predicted impact of climate warming on fluvial sediment budgets.
Fig. 5: The increasing impact of human action on sediment fluxes and loads.

Similar content being viewed by others

References

  1. Wilkinson, B. H. Humans as geologic agents: a deep-time perspective. Geology 33, 161–164 (2005).

    Article  Google Scholar 

  2. Syvitski, J. P. M., Vörösmarty, C., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    Article  Google Scholar 

  3. Meade, R. H. Movement and storage of sediment in river systems. In Physical and Chemical Weathering in Geochemical Cycles (eds Lerman, A. & Meybeck, M.) 165–179, (Springer, 1988).

  4. Nicholas, A. P., Ashworth, P. J., Kirkby, M. J., Macklin, M. G. & Murray, T. Sediment slugs: large-scale fluctuations in fluvial sediment transport rates and storage volumes. Prog. Phys. Geography Earth Environ. 19, 500–519 (1995).

    Article  Google Scholar 

  5. Trimble, S. W. The fallacy of stream equilibrium in contemporary denudation studies. Am. J. Sci. 277, 876–887 (1977).

    Article  Google Scholar 

  6. Vörösmarty, C. J., Fekete, B. M., Meybeck, M. & Lammers, R. Global system of rivers: its role in organizing continental land mass and defining land-to-ocean linkages. Glob. Biogeochem. Cycles 14, 599–621 (2000).

    Article  Google Scholar 

  7. Syvitski, J. et al. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. Commun. Earth Environ. 1, 32 (2020).

    Article  Google Scholar 

  8. Zalasiewicz, J. et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat. Int. 383, 196–203 (2015).

    Article  Google Scholar 

  9. Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).

    Article  Google Scholar 

  10. Hay, W. H. Pleistocene–Holocene fluxes are not the Earth’s norm. In Global Sedimentary Geofluxes (ed. Hay, W. H.) 15–27 (National Academy of Sciences Press, 1994).

  11. Walling, D. E. & Webb, B. W. Erosion and sediment yield: a global overview. In Erosion and Sediment Yield: Global and Regional Perspectives 3–19 (IAHS, 1996).

  12. Syvitski, J. P. M. Sediment fluxes and rates of sedimentation. In Encyclopedia of Sediments and Sedimentary Rocks (ed. Middleton, G. V.) 600–606 (Kluwer Academic, Netherlands, 2003).

  13. Hallet, B., Hunter, L. & Bogen, J. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob. Planet. Change 12, 213–235 (1996).

    Article  Google Scholar 

  14. Métivier, F., Gaudemer, Y., Tapponnier, P. & Klein, M. Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int. 137, 280–318 (1999).

    Article  Google Scholar 

  15. Latrubesse, E. M. & Restrepo, J. D. Sediment yield along the Andes: continental budget, regional variations, and comparisons with other basins from orogenic mountain belts. Geomorphology 216, 225–233 (2014).

    Article  Google Scholar 

  16. Syvitski, J. P. M. & Milliman, J. D. Geology, geography, and humans battle for dominance over the delivery of sediment to the coastal ocean. J. Geol. 115, 1–19 (2007).

    Article  Google Scholar 

  17. Syvitski, J. P. M. & Kettner, A. J. Sediment flux and the Anthropocene. Phil. Trans. R. Soc. A 369, 957–975 (2011).

    Article  Google Scholar 

  18. Milliman, J. D. & Syvitski, J. P. M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    Article  Google Scholar 

  19. Holmes, R. M. et al. A circumpolar perspective on fluvial sediment flux to the Arctic ocean. Glob. Biogeochem. Cycles 16, 45-1–45-14 (2002).

    Article  Google Scholar 

  20. Gordeev, V. V. Fluvial sediment flux to the Arctic Ocean. Geomorphology 80, 94–104 (2006).

    Article  Google Scholar 

  21. Syvitski, J. P., Kettner, A. J., Overeem, I., Brakenridge, G. R. & Cohen, S. Latitudinal controls on siliciclastic sediment production and transport. In Latitudinal Controls on Stratigraphic Models and Sedimentary Concepts 14–28 (eds Fraticelli, C. M., Martinius, A. W., Markwick, P. & Suter, J. R.) (Geological Society Special Publication, 2019).

  22. Dadson, S. J. et al. Earthquake triggered increase in sediment delivery from an active mountain belt. Geology 32, 733–736 (2004).

    Article  Google Scholar 

  23. Hovius, N. et al. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet. Sci. Lett. 3–4, 347–355 (2011).

    Article  Google Scholar 

  24. Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859–863 (2017).

    Article  Google Scholar 

  25. Steinberger, B. Topography caused by mantle density variations: observation-based estimates and models derived from tomography and lithosphere thickness. Geophys. J. Int. 205, 604–621 (2016).

    Article  Google Scholar 

  26. Stallard, R. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).

    Article  Google Scholar 

  27. Syvitski, J. P. M., Overeem, I., Brakenridge, G. R. & Hannon, M. D. Floods, floodplains, delta plains — a satellite imaging approach. Sediment. Geol. 267/268, 1–14 (2012).

    Article  Google Scholar 

  28. Kettner, A. J., Restrepo, J. D. & Syvitski, J. P. M. A spatial simulation experiment to replicate the fluvial sediment fluxes within the Magdalena River Basin, Colombia. J. Geol. 118, 363–379 (2010).

    Article  Google Scholar 

  29. Chen, Z., Wang, Z., Finlayson, B., Chen, J. & Yin, D. Implications of flow control by the Three Gorges Dam on sediment and channel dynamics of the middle Yangtze (Changjiang) River, China. Geology 38, 1043–1046 (2010).

    Article  Google Scholar 

  30. Wilkinson, B. H. & McElroy, B. J. The impact of humans on continental erosion and sedimentation. Geol. Soc. Am. Bull. 119, 140–156 (2007).

    Article  Google Scholar 

  31. Beach, T. The fate of eroded soil: sediment sinks and sediment budgets of agrarian landscapes in southern Minnesota, 1851–1988. Ann. Assoc. Am. Geogr. 84, 5–28 (1994).

    Article  Google Scholar 

  32. Restrepo, J. D., Kettner, A. J. & Syvitski, J. P. Recent deforestation causes rapid increase in river sediment load in the Colombian Andes. Anthropocene 10, 13–28 (2015).

    Article  Google Scholar 

  33. Smith, S. V., Renwick, W. H., Buddemeier, R. W. & Crossland, C. J. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Glob. Biogeochem. Cycles 15, 697 (2001).

    Article  Google Scholar 

  34. Ibáñez, C. et al. Basin-scale land use impacts on world deltas: human vs natural forcings. Glob. Planet. Change 173, 24–32 (2019).

    Article  Google Scholar 

  35. Curtis, W. F., Culbertson, K. & Chase, E. B. Fluvial-sediment discharge to the oceans from the conterminous United States. US Geol. Surv. Circ. 670, 1–17 (1973).

    Google Scholar 

  36. Chen, Z., Syvitski, J. P. M., Gao, S., Overeem, I. & Kettner, A. J. Socio-economic impacts on flooding: a 4000-year history of the Yellow River, China. Ambio 41, 682–698 (2012).

    Article  Google Scholar 

  37. Zhou, L. Y. et al. Coastal erosion as a major sediment supplier to continental shelves: example from the abandoned Old Huanghe (Yellow River) delta. Continental Shelf Res. 82, 43–59 (2014).

    Article  Google Scholar 

  38. Zhou, L. et al. Sediment budget of the Yellow River delta during 1959–2012, estimated from morphological changes and accumulation rates. Mar. Geol. 430, 106363 (2020).

    Article  Google Scholar 

  39. Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G. & Meybeck, M. Effective sea-level rise in deltas: sources of change and human-dimension implications. Glob. Planet. Change 50, 63–82 (2006).

    Article  Google Scholar 

  40. Walsh, J. P. & Nittrouer, C. A. Understanding fine-grained river-sediment dispersal on continental margins. Mar. Geol. 263, 34–45 (2009).

    Article  Google Scholar 

  41. Bernhardt, A. & Schwanghart, W. Where and why do submarine canyons remain connected to the shore during sealevel rise? — Insights from global topographic analysis and Bayesian regression. Geophys. Res. Lett. 48, e2020GL092234 (2021).

    Article  Google Scholar 

  42. Morehead, M. D., Syvitski, J. P. M., Hutton, E. W. H. & Peckham, S. D. Modelling the temporal variability in the flux of sediment in ungauged river basins. Glob. Planet. Change 39, 95–110 (2003).

    Article  Google Scholar 

  43. Meybeck, M., Laroche, L., Darr, H. H. & Syvitski, J. P. M. Global variability of daily total suspended solids and their fluxes in rivers. Glob. Planet. Change 39, 65–93 (2003).

    Article  Google Scholar 

  44. Paszkowski, A., Goodbred, S., Borgomeo, E., Shah Alam Khan, M. & Hall, J. W. Geomorphic change in the Ganges–Brahmaputra–Meghna delta. Nat. Rev. Earth Environ. 2, 763–780 https://www.nature.com/articles/s43017-021-00213-4 (2021).

    Article  Google Scholar 

  45. Overeem, I. & Syvitski, J. P. M. Shifting discharge peaks in Arctic rivers 1977–2007. Geogr. Ann. A 92, 285–296 (2010).

    Article  Google Scholar 

  46. Rawlins, M. A. et al. Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J. Clim. 23, 5715–5737 (2010).

    Article  Google Scholar 

  47. Syvitski, J. P. M. et al. Dynamics of the coastal zone. In Coastal Fluxes in the Anthropocene 39–94 (eds Crossland, C. J., Kremer, H. H., Lindeboom, H. J., Marshall Crossland, J. I. & Le Tissier, M. D. A.) (Springer, 2005).

  48. Syvitski, J. P. M., Morehead, M. D., Bahr, D. & Mulder, T. Estimating fluvial sediment transport: the rating parameters. Wat. Resour. Res. 36, 2747–2760 (2000).

    Article  Google Scholar 

  49. N’kaya, G. D. M., Orange, D., Bayonne Padou, S. M., Datok, P. & Laraque, A. Temporal variability of sediments, dissolved solids and dissolved organic matter fluxes in the Congo river at Brazzaville/Kinshasa. Geosciences 10, 341 (2020).

    Article  Google Scholar 

  50. Huang, T.-H., Fu, Y.-H., Pan, P.-Y. & Chen, C.-T. A. Fluvial carbon fluxes in tropical rivers. Curr. Opin. Environ. Sustain. 4, 162–169 (2012).

    Article  Google Scholar 

  51. Lyons, W. B., Nezat, C. A., Carey, A. E. & Hicks, D. M. Organic carbon fluxes to the ocean from high-standing islands. Geology 30, 443–446 (2002).

    Article  Google Scholar 

  52. Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., Ludwig, W. & Harrison, J. Estimation of global river transport of sediments and associated particulate C, N, and P. Glob. Biogeochem. Cycles 19, GB4S05 (2005).

    Article  Google Scholar 

  53. Bianchi, T. S. et al. Centers of organic carbon burial and oxidation at the land–ocean interface. Org. Geochem. 115, 138–155 (2018).

    Article  Google Scholar 

  54. Burdige, D. J. Burial of terrestrial organic matter in marine sediments: a reassessment. Glob. Biogeochem.Cycles 19, GB4011 (2005).

    Article  Google Scholar 

  55. Qiao, J. et al. Runoff-driven export of terrigenous particulate organic matter from a small mountainous river: sources, fluxes and comparisons among different rivers. Biogeochemistry 147, 71–86 (2020).

    Article  Google Scholar 

  56. Usman, M. O. et al. Reconciling drainage and receiving basin signatures of the Godavari River system. Biogeosciences 15, 3357–3375 (2018).

    Article  Google Scholar 

  57. Pradhan, U. K. et al. Multi-proxy evidence for compositional change of organic matter in the largest tropical (peninsula) river basin of India. J. Hydrol. 519, 999–1009 (2014).

    Article  Google Scholar 

  58. Gruca-Rokosz, R. Quantitative fluxes of the greenhouse gases CH4 and CO2 from the surfaces of selected Polish reservoirs. Atmosphere 11, 286 (2020).

    Article  Google Scholar 

  59. Zalasiewicz, J. et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 13, 4–17 (2016).

    Article  Google Scholar 

  60. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  61. Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article  Google Scholar 

  62. Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019).

    Article  Google Scholar 

  63. Probst, J. L. & Tardy, Y. Global runoff fluctuations during the last 80 years in relation to world temperature change. Am. J. Sci. 289, 267–285 (1989).

    Article  Google Scholar 

  64. Knox, J. C. Large increase in flood magnitude in response to modest changes in climate. Nature 361, 430–432 (1993).

    Article  Google Scholar 

  65. Milliman, J. D. & Kao, S. J. Hyperpycnal discharge of fluvial sediment to the ocean: impact of super-typhoon Herb (1996) on Taiwanese rivers. J. Geol. 113, 503–516 (2005).

    Article  Google Scholar 

  66. Wang, H. et al. Recent changes of sediment flux to the western Pacific Ocean from major rivers in east and southeast Asia. Earth Sci. Rev. 108, 80–100 (2011).

    Article  Google Scholar 

  67. Depetris, P. J., Kempe, S., Latif, M. & Mook, W. G. ENSO controlled flooding in the Parana River (1904-1991). Naturwissenschaften 83, 127–129 (1996).

    Article  Google Scholar 

  68. Vörösmarty, C. J. et al. Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modelling. Water Resour. Res. 32, 3137–3150 (1996).

    Article  Google Scholar 

  69. Restrepo, J. D. & Kjerfve, B. Magdalena river: interannual variability (1975–1995) and revised water discharge and sediment load estimates. J. Hydrol. 235, 137–149 (2000).

    Article  Google Scholar 

  70. Mulder, T. & Syvitski, J. P. M. Climatic and morphologic relationships of rivers. Implications of sea level fluctuations on river loads. J. Geol. 104, 509–523 (1996).

    Article  Google Scholar 

  71. Poag, C. W. U.S. middle Atlantic continental rise: provenance, dispersal, and deposition of Jurassic to Quaternary sediments. In Geologic Evolution of Atlantic Continental Rises 100–156 (eds Poag, C. W. & Graciansky, P. C.) (Van Nostrand Reinhold, 1992).

  72. Elverhøi, A., Hooke, R. L. & Solheim, A. Late Cenozoic erosion and sediment yield from the Svalbard-Barents Sea region; implications for understanding erosion of glacierized basins. Quat. Sci. Rev. 17, 209–241 (1998).

    Article  Google Scholar 

  73. O’Grady, D. B. & Syvitski, J. P. M. Large-scale morphology of Arctic continental slopes: the influence of sediment delivery on slope form. In Glacier-Influenced Sedimentation on High-Latitude Continental Margins (eds Dowdeswell, J. A. & O’Cofaigh, C.) 11–31 (Geological Society, 2002).

  74. Goodbred, S. L. & Kuehl, S. A. Holocene and modern sediment budgets for the Ganges–Brahmaputra river system: evidence for highstand dispersal to floodplain, shelf and deep-sea depocenters. Geology 27, 559–562 (1999).

    Article  Google Scholar 

  75. Kettner, A. J. & Syvitski, J. P. M. Predicting discharge and sediment flux of the Po River, Italy since the Late Glacial Maximum. In Analogue and Numerical Forward Modelling of Sedimentary Systems: from Understanding to Prediction (eds De Boer, P. L., Postma, G., van der Zwan, C. J., Burgess, P. M. & Kukla, P.) 171–189 (International Association of Sedimentologists, 2008).

  76. Goodbred, S. L. & Kuehl, S. A. Enormous Ganges–Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology 28, 1083–1086 (2000).

    Article  Google Scholar 

  77. Wang, Z. et al. Three-dimensional evolution of the Yangtze River mouth, China during the Holocene: impacts of sea level, climate and human activity. Earth Sci. Rev. 185, 938–955 (2018).

    Article  Google Scholar 

  78. Jenny, J. P. et al. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl Acad. Sci. USA 116, 22972–22976 (2019).

    Article  Google Scholar 

  79. Sima, R. J. A dirty truth: humans began accelerating soil erosion 4,000 years ago. Eos https://doi.org/10.1029/2019EO137634 (2019).

  80. Wu, Z. et al. Anthropogenic impacts on the decreasing sediment loads of nine major rivers in China, 1954–2015. Sci. Total. Environ. 739, 139653 (2020).

    Article  Google Scholar 

  81. Wu, X. et al. Climate and humans battle for dominance over the Yellow River’s sediment discharge: from the Mid-Holocene to the Anthropocene. Mar. Geol. 425, 106188 (2020).

    Article  Google Scholar 

  82. Kong, R. et al. Increasing carbon storage in subtropical forests over the Yangtze River basin and its relations to the major ecological projects. Sci. Total. Environ. 709, 136163 (2020).

    Article  Google Scholar 

  83. Kettner, A. J., Gomez, B. & Syvitski, J. P. M. Modeling suspended sediment discharge from the Waipaoa River system, New Zealand: the last 3000 years. Water Resour. Res. 43, W07411 (2007).

    Article  Google Scholar 

  84. Giosan et al. Massive erosion in monsoonal central India linked to late Holocene land cover degradation. Earth Surf. Dynam. 5, 781–789 (2017).

    Article  Google Scholar 

  85. Meybeck, M. & Vörösmarty, C. J. Fluvial filtering of land to ocean fluxes: from natural Holocene variations to Anthropocene. Comptes Rendus 337, 107–123 (2005).

    Google Scholar 

  86. Tréguer, P. J. & De La Rocha, C. L. The world ocean silica cycle. Annu. Rev. Mar. Sci. 5, 477–501 (2013).

    Article  Google Scholar 

  87. Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).

    Article  Google Scholar 

  88. Tréguer, P. et al. Reviews and syntheses: the biogeochemical cycle of silicon in the modern ocean. Biogeosciences 18, 1269–1289 (2021).

    Article  Google Scholar 

  89. Leithold, E. L. & Blair, N. E. Watershed control on the carbon loading of marine sedimentary particles. Geochim. Cosmochim. Acta 65, 2231–2240 (2001).

    Article  Google Scholar 

  90. Nittrouer, C. A. et al. Writing a Rosetta stone: insights into continental-margin sedimentary processes and strata. In Continental-Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy (eds Nittrouer, C. A. et al.) 1–48 (IAS, 2007).

  91. Milliman, J. D. & Farnsworth, K. L. River Discharge to the Coastal Ocean 384 (Cambridge Univ. Press, 2011).

  92. Tanaka, T. Y. & Chiba, M. A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Change 52, 88–104 (2006).

    Article  Google Scholar 

  93. Maher, B. A. et al. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the Last Glacial Maximum. Earth Sci. Rev. 99, 61–97 (2010).

    Article  Google Scholar 

  94. Saito, Y., Chaimanee, N., Jarupongsakul, T. & Syvitski, J. P. M. Shrinking megadeltas in Asia: sea-level rise and sediment reduction impacts from case study of the Chao Phraya delta. Inprint Newsletter of the IGBP/IHDP Land Ocean Interaction in the Coastal Zone 2007/2, 3–9 (2007).

    Google Scholar 

  95. Latrubesse, E. M., Amsler, M. L., de Morais, R. P. & Aquino, S. The geomorphologic response of a large pristine alluvial river to tremendous deforestation in the South American tropics: the case of the Araguaia River. Geomorphology 113, 239–252 (2009).

    Article  Google Scholar 

  96. Restrepo, J. D. & Syvitski, J. P. M. Assessing the effect of natural controls and land use change on sediment yield in a major Andean river: the Magdalena drainage basin, Colombia. Ambio 35, 65–74 (2006).

    Article  Google Scholar 

  97. Wang, H., Yang, Z., Saito, Y., Liu, J. P. & Sun, X. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2004): impacts from climate changes and human activities. Glob. Planet. Change 57, 331–354 (2007).

    Article  Google Scholar 

  98. Chen, Y., Overeem, I., Gao, S., Syvitski, J. P. M. & Kettner, A. J. Quantifying sediment storage on the floodplains outside levees along the lower Yellow River during the years 1580–1849. Earth Surf. Process. Landf. 44, 581–594 (2018).

    Article  Google Scholar 

  99. Syvitski, J. P. M., Kettner, A., Peckham, S. D. & Kao, S. J. Predicting the flux of sediment to the coastal zone: application to the Lanyang watershed, northern Taiwan. J. Coast. Res. 21, 580–587 (2005).

    Article  Google Scholar 

  100. Walling, D. E. & Fang, D. Recent trends in the suspended sediment loads of the world’s rivers. Glob. Planet. Change 39, 111–126 (2003).

    Article  Google Scholar 

  101. Wu, X. et al. Can reservoir regulation along the Yellow River be a sustainable way to save a sinking delta? Earths Future 8, e2020EF001587 (2020).

    Article  Google Scholar 

  102. Syvitski, J. P. M. Deltas at risk. Sustain. Sci. 3, 23–32 (2008).

    Article  Google Scholar 

  103. Kondolf, G. M. et al. Changing sediment budget of the Mekong: cumulative threats and management strategies for a large river basin. Sci. Total. Environ. 625, 114–134 (2018).

    Article  Google Scholar 

  104. Syvitski, J. P. M. & Brakenridge, G. R. Causation and avoidance of catastrophic flooding along the Indus River, Pakistan. GSA Today 23, 4–10 (2013).

    Article  Google Scholar 

  105. Cooper, A. H., Brown, T. J., Price, S. J., Ford, J. R. & Waters, C. N. Humans are the most significant global geomorphological driving force of the 21st century. Anthropocene Rev. 5, 222–229 (2018).

    Article  Google Scholar 

  106. Global Aggregates Information Network (GAIN). GAIN newsletter #4, January 2019. GAIN https://www.gain.ie/s/GAIN_Newsletter_Jan19.pdf (2019).

  107. Waters, C. N. & Zalasiewicz, J. Concrete: the most abundant novel rock type of the Anthropocene. In The Encyclopedia of the Anthropocene Vol. 1 75–85 (eds Sala, D. A. D. & Goldstein, M. I.) (Elsevier, 2018).

  108. Kemp, D. B., Sadler, P. M. & Vanacker, V. The human impact on North American erosion, sediment transfer, and storage in a geologic context. Nat. Commun. 11, 6012 (2020).

    Article  Google Scholar 

  109. Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl Acad. Sci. USA 104, 133268–133272 (2007).

    Article  Google Scholar 

  110. Reusser, L., Bierman, P. & Rood, D. Quantifying human impacts on rates of erosion and sediment transport at a landscape scale. Geology 43, 171–174 (2014).

    Article  Google Scholar 

  111. Bonachea, J. et al. Natural and human forcing in recent geomorphic change; case studies in the Rio de la Plata basin. Sci. Total. Env. 408, 2674–2695 (2010).

    Article  Google Scholar 

  112. Liu et al. Global vegetation biomass change (1988–2008) and attribution to environmental and human drivers. Glob. Ecol. Biogeogr. 22, 692–705 (2013).

    Article  Google Scholar 

  113. Faour, G. et al. Global trends analysis of the main vegetation types throughout the past four decades. Appl. Geogr. 97, 184–195 (2018).

    Article  Google Scholar 

  114. Hooke, R. L. On the history of humans as geomorphic agents. Geology 28, 843–846 (2000).

    Article  Google Scholar 

  115. Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).

    Article  Google Scholar 

  116. Harden, D. R. A comparison of flood-producing storms and their impacts in northwestern California. In Geomorphic Processes and Aquatic Habitat in the Redwood Creek Basin, Northwestern California. US Geological Survey Professional Paper 1454, D1–D9 (USGS, 1995).

  117. Hewawasam, T., von Blanckenburg, F., Schaller, M. & Kubik, P. Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology 31, 597–600 (2003).

    Article  Google Scholar 

  118. Vörösmarty, C. et al. Anthropogenic sediment retention: major global-scale impact from the population of registered impoundments. Glob. Planet. Change 39, 169–190 (2003).

    Article  Google Scholar 

  119. Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).

    Article  Google Scholar 

  120. Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Article  Google Scholar 

  121. Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. Global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Article  Google Scholar 

  122. International Commission on Large Dams. World Register of Dams: general synthesis. WRD http://www.icold-cigb.org/GB/world_register/general_synthesis.asp (2017).

  123. Syvitski, J. P., Zalasiewicz, J. & Summerhayes, C. Changes to Holocene/Anthropocene patterns of sedimentation from terrestrial to marine. In The Anthropocene as a Geological Time Unit: A Guide to the Scientific Evidence and Current Debate (eds Zalasiewicz, J., Waters, C., Williams, M. & Summerhayes, C.) 90–108 (Cambridge Univ. Press, 2019).

  124. Syvitski, J. P. M., Kettner, A. J., Correggiari, A. & Nelson, B. W. Distributary channels and their impact on sediment dispersal. Mar. Geol. 222/223, 75–94 (2005).

    Article  Google Scholar 

  125. Syvitski, J. P. M. & Kettner, A. J. On the flux of water and sediment into the Northern Adriatic. Continental Shelf Res. 27, 296–308 (2007).

    Article  Google Scholar 

  126. Syvitski, J. P. M. et al. Anthropocene metamorphosis of the Indus delta and lower floodplain. Anthropocene 3, 24–35 (2013).

    Article  Google Scholar 

  127. Laruelle, G. G. et al. Anthopogenic perturbations of the silicon cycle at the global scale: key role of the land-ocean transition. Glob. Biogeochem. Cycles 23, GB4031 (2009).

    Article  Google Scholar 

  128. Harmer, O. P. & Clifford, N. J. Geomorphological explanation of the long profile of the Lower Mississippi River. Geomorphology 84, 222–240 (2007).

    Article  Google Scholar 

  129. Galat, D. L. A. O. Flooding to restore connectivity of regulated, large-river wetlands: natural and controlled flooding as complementary processes along the lower Missouri River. Bioscience 48, 721–733 (1998).

    Article  Google Scholar 

  130. Day, J. W., Lane, R. R., D’Elia, C. & Kemp, G. P. Large infrequently operated river diversions for Mississippi delta restoration. Estuar. Coast. Shelf Sci. 183, 1–12 (2016).

    Article  Google Scholar 

  131. Higgins, S. A., Overeem, I., Rogers, K. G. & Kalina, E. A. River linking in India: downstream impacts on water discharge and suspended sediment transport to deltas. Elem. Sci. Anthrop. 6, 20 (2018).

    Article  Google Scholar 

  132. Monteiro, P. J. M. et al. Towards sustainable concrete. Nat. Mater. 16, 698–699 (2017).

    Article  Google Scholar 

  133. Filho, W. L. et al. The unsustainable use of sand: reporting on a global problem. Sustainability 13, 3356 (2021).

    Article  Google Scholar 

  134. Kamboj, V., Kamboj, N. & Sharma, S. Environmental impact of riverbed mining — a review. Intl. J. Sci. Res. Rev. 7, 504–520 (2017).

    Google Scholar 

  135. Mechi, A. & Sanches, D. L. The environmental impact of mining in the state of São Paulo. Estudos Avançados 24, 209–220 (2010).

    Article  Google Scholar 

  136. Bisht, A. & Gerber, J. F. Ecological distribution conflicts (EDCs) over mineral extractivism in India: an overview. Extract. Indust. Soc. 4, 548–563 (2017).

    Article  Google Scholar 

  137. Bisht, A. Discontent, conflict, social resistance and violence at non-metallic mining frontiers in India. Ecol. Econ. Soc. 2, 31–42 (2019).

    Article  Google Scholar 

  138. Bisht, A. Conceptualizing sand extractivism: deconstructing an emerging resource frontier. Extract. Indust. Soc. 8, 100904 (2021).

    Article  Google Scholar 

  139. Bravard, J.-P. et al. Geography of sand and gravel mining in the Lower Mekong River. EchoGeo http://echogeo.revues.org/13659 (2013).

  140. Hackney, C. R. et al. Sand mining far outpaces natural supply in a large alluvial river. Earth Surf. Dyn. 9, 1323–1334 (2021).

    Article  Google Scholar 

  141. Hackney, C. R. et al. Riverbank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain. 3, 217–225 (2020).

    Article  Google Scholar 

  142. United Nations. Import of natural sand except sand for mineral extraction as reported. United Nations Commodity Trade Statistics Database http://comtrade.un.org (2014).

  143. Torres, A., Brandt, J., Lear, K. & Liu, J. A looming tragedy of the sand commons. Science 357, 970–971 (2017).

    Article  Google Scholar 

  144. James, J. et al. The effective development of offshore aggregates in south-east Asia. Technical Report WC/99/9 (British Geological Survey, 1999).

  145. Jia, L. et al. Impacts of the large amount of sand mining on riverbed morphology and tidal dynamics in lower reaches and delta of the Dongjiang River. J. Geogr. Sci. 17, 197–211 (2007).

    Article  Google Scholar 

  146. Velegrakis, A. F. et al. European marine aggregates resources: origins, usage, prospecting and dredging techniques. J. Coast. Res. 51, 1–14 (2010).

    Google Scholar 

  147. Amoroso, R. O. et al. Bottom trawl fishing footprints on the world’s continental shelves. Proc. Natl Acad. Sci. USA 115, E10275–E10282 (2018).

    Article  Google Scholar 

  148. Martín, J., Puig, P., Masqué, P., Palanques, A. & Sánchez-Gómez, A. Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon. PLoS ONE 9, e104536 (2014).

    Article  Google Scholar 

  149. Paradis, S. et al. Bottom trawling along submarine canyons impacts deep sedimentary regimes. Sci. Rep. 7, 43332 (2017).

    Article  Google Scholar 

  150. Oberle, F. K. J., Storlazzi, C. D. & Hanebuth, T. J. J. What a drag: quantifying the global impact of chronic bottom trawling on continental shelf sediment. J. Mar. Syst. 159, 109–119 (2016).

    Article  Google Scholar 

  151. GISTEMP Team. GISS surface temperature analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies http://data.giss.nasa.gov/gistemp/ (2021).

  152. Lenssen, N. J. L. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124, 6307–6326 (2019).

    Article  Google Scholar 

  153. Schmidt, G. A., Ruedy, R. A., Miller, R. L. & Lacis, A. A. Attribution of the present-day total greenhouse effect. J. Geophys. Res. 115, D20106 (2010).

    Article  Google Scholar 

  154. Zanna, L., Khatlwala, S., Gregory, J. M., Ison, J. & Helmbach, P. Global reconstruction of historical ocean heat storage and transport. Proc. Natl Acad. Sci. USA 116, 1126–1131 (2019).

    Article  Google Scholar 

  155. Rempel, A. W., Marshall, J. A. & Roering, J. J. Modeling relative frost weathering rates at geomorphic scales. Earth Planet. Sci. Lett. 453, 87–95 (2016).

    Article  Google Scholar 

  156. Syvitski, J. P. M., Peckham, S. D., Hilberman, R. D. & Mulder, T. Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment. Geol. 162, 5–24 (2003).

    Article  Google Scholar 

  157. Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian high Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).

    Article  Google Scholar 

  158. Kokelj, S. V. et al. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. J. Geophys. Res. Earth Surf. 118, 681–692 (2013).

    Article  Google Scholar 

  159. Syvitski, J. P. M. Sediment discharge variability in Arctic rivers: implications for a warmer future. Polar Res. 21, 323–330 (2002).

    Article  Google Scholar 

  160. Li, D. et al. Exceptional increases in fluvial sediment fluxes in a warmer and wetter high mountain Asia. Science 374, 599–603 (2021).

    Article  Google Scholar 

  161. Syvitski, J. P. M. & Andrews, J. T. Climate change: numerical modelling of sedimentation and coastal processes, Eastern Canadian Arctic. Arctic Alpine Res. 26, 199–212 (1994).

    Article  Google Scholar 

  162. Van der Broeke, M. et al. On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 10, 1933–1946 (2016).

    Article  Google Scholar 

  163. Bendixen, M. et al. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550, 101–104 (2017).

    Article  Google Scholar 

  164. Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018).

    Article  Google Scholar 

  165. Mankoff, K. D. et al. Greenland Ice Sheet solid ice discharge from 1986 through March 2020. Earth Syst. Sci. Data 12, 1367–1383 (2020).

    Article  Google Scholar 

  166. Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  167. Zimov, S. A. et al. Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys. Res. Lett. 33, L20502 (2006).

    Article  Google Scholar 

  168. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article  Google Scholar 

  169. Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).

    Article  Google Scholar 

  170. Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Article  Google Scholar 

  171. Schweiger, A., Zhang, J., Lindsay, R., Steele, M. & Stern, H. PIOMAS arctic sea ice volume reanalysis. Polar Science Centre http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/ (2019).

  172. Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, L17503 (2011).

    Article  Google Scholar 

  173. Crawford, A. D. & Serreze, M. C. Projected changes in the Arctic frontal zone and summer Arctic cyclone activity in the CESM large ensemble. J. Clim. 30, 9847–9869 (2017).

    Article  Google Scholar 

  174. Jones, B. M. et al. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 36, L03503 (2009).

    Article  Google Scholar 

  175. Gibbs, A. E., Ohman, K. A., Coppersmith, R. & Richmond, B. M. National Assessment of Shoreline Change: A GIS Compilation of Updated Vector Shorelines and Associated Shoreline Change Data for the North Coast of Alaska, U.S. Canadian border to Icy Cape (US Geological Survey, 2017).

  176. Lantuit, H. et al. The Arctic coastal dynamics database: a new classification scheme and statistics on arctic permafrost coastlines. Estuaries Coasts 35, 383–400 (2012).

    Article  Google Scholar 

  177. Barnhart, K. R. et al. Modelling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea coast. J. Geophys. Res. Earth 119, 1155–1179 (2014).

    Article  Google Scholar 

  178. Barnhart, K. R., Overeem, I. & Anderson, R. S. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8, 1777–1799 (2014).

    Article  Google Scholar 

  179. Syvitski, J., Cohen, S., Miara, A. & Best, J. River temperature and the thermal-dynamic transport of sediment. Glob. Planet. Change 178, 168–183 (2019).

    Article  Google Scholar 

  180. Scott, K. M. Effects of Permafrost on Stream Channel Behavior in Arctic Alaska USGS Professional Paper 1068, 1–19 (US Geological Survey, 1978).

  181. Madakumbura, G. D. et al. Event-to-event intensification of the hydrologic cycle from 1.5 °C to a 2 °C warmer world. Sci. Rep. 9, 3483 (2019).

    Article  Google Scholar 

  182. Wiman, C., Hamilton, B., Dee, S. G. & Muñoz, S. E. Reduced lower Mississippi River discharge during the Medieval era. Geophys. Res. Lett. 48, e2020GL091182 (2021).

    Article  Google Scholar 

  183. Kettner, A. et al. Estimating change in flooding for the 21st Century under a conservative RCP forcing: a global hydrological modelling assessment. In Global Flood Hazard: Applications in Modeling, Mapping, and Forecasting AGU Geophysical Monograph Vol. 233 157–167 (Wiley-Blackwell, 2018).

  184. McDonald, K. C., Kimball, J. S., Njoku, E., Zimmerman, R. & Zhao, M. Variability in springtime thaw in the terrestrial high latitudes: monitoring a major control on the biospheric assimilation of atmospheric CO2 with spaceborne microwave remote sensing. Earth Interact. 8, 1–23 (2004).

    Article  Google Scholar 

  185. Cohen, S., Kettner, A. J. & Syvitski, J. P. M. Global suspended sediment and water discharge dynamics between 1960 and 2010: continental trends and intra-basin sensitivity. Glob. Planet. Change 115, 44–58 (2014).

    Article  Google Scholar 

  186. Bywater-Reyes, S., Segura, C. & Bladon, K. D. Geology and geomorphology control suspended sediment yield and modulate increases following timber harvest in temperate headwater streams. J. Hydrol. 548, 754–769 (2017).

    Article  Google Scholar 

  187. Tenorio, G. E. et al. Tracking spatial variation in river load from Andean highlands to inter-Andean valleys. Geomorphology 308, 175–189 (2018).

    Article  Google Scholar 

  188. Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979–985 (2019).

    Article  Google Scholar 

  189. Mirzabaev, A. et al. Desertification. In Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) Ch. 3, 249–343 (IPCC, 2019).

  190. Runesson, U. Forest fires — an overview. Boreal Forests http://www.borealforest.o.rg/world/innova/forest_fire.htm (2020).

  191. Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).

    Article  Google Scholar 

  192. Warrick, J. A. et al. The effects of wildfire on the sediment yield of a coastal California watershed. GSA Bull. 124, 1130–1146 (2012).

    Article  Google Scholar 

  193. DeBano, L. F. The role of fire and soil heating on water repellency in wildland environments: a review. J. Hydrol. 231–232, 195–206 (2000).

    Article  Google Scholar 

  194. Cannon, S. H. et al. Predicting the probability and volume of post-wildfire debris flows in the intermountain western United States. Geol. Soc. Am. Bull. 122, 127–144 (2010).

    Article  Google Scholar 

  195. Santi, P. M. & Ringers, F. K. Wildfire and landscape change. In Treatise on Geomorphology 262–287 (Elsevier, 2020).

  196. DiBiase, R. A. & Lamb, M. P. Vegetation and wildfire controls on sediment yield in bedrock landscapes. Geophys. Res. Lett. 40, 1093–1097 (2013).

    Article  Google Scholar 

  197. DiBiase, R. A. & Lamb, M. P. Dry sediment loading of headwater channels fuels post-wildfire debris flows in bedrock landscapes. Geology 48, 189–193 (2019).

    Article  Google Scholar 

  198. Moody, J. A. & Martin, D. A. Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. Int. J. Wildland Fire 18, 96–115 (2009).

    Article  Google Scholar 

  199. Neukom, R. et al. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571, 550–554 (2019).

    Article  Google Scholar 

  200. Hooijer, H. & Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nature. Nat. Commun. 12, 3592 (2021).

    Article  Google Scholar 

  201. Syvitski, J. P. M. & Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Changes 57, 261–282 (2007).

    Article  Google Scholar 

  202. Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–689 (2009).

    Article  Google Scholar 

  203. Tessler, Z. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).

    Article  Google Scholar 

  204. Giosan, L., Syvitski, J., Constantinescu, S. & Day, J. Climate change: protect the world’s deltas. Nature 516, 31–33 (2014).

    Article  Google Scholar 

  205. Tessler, Z. D., Vörösmarty, C. J., Overeem, I. & Syvitski, J. P. M. A model of water and sediment balance as determinants of relative sea level rise in contemporary and future deltas. Geomorphology 305, 209–220 (2018).

    Article  Google Scholar 

  206. Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H. & Stouthamer, E. Mekong deltas much lower than previously assumed in sea-level rise impact assessments. Nat. Commun. 10, 3847 (2019).

    Article  Google Scholar 

  207. Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019).

    Article  Google Scholar 

  208. Ishitsuka, K. et al. Natural surface rebound of the Bangkok plain and aquifer characterization by persistent scatterer interferometry. Geochem. Geophys. Geosyst. 15, 965–974 (2014).

    Article  Google Scholar 

  209. Turner, R. E., Swenson, E. M., Milan, C. S. & Lee, J. M. Hurricane signals in salt marsh sediments: Inorganic sources and soil volume. Limnol. Oceanogr. 52, 1231–1238 (2007).

    Article  Google Scholar 

  210. Turner, R. E., Baustian, J. J., Swenson, E. M. & Spicer, J. S. Wetland sedimentation from hurricanes Katrina and Rita. Science 314, 449–452 (2006).

    Article  Google Scholar 

  211. Rogers, K. G., Syvitski, J. P. M., Overeem, I., Higgins, S. & Gilligan, J. Farming practices and anthropogenic delta dynamics. In Proceedings IAHS-IAPSO-IASPEI Joint 37th Scientific Assembly, Gothenburg, Sweden Vol. 358 133–142 (IAHS, 2013).

  212. Wang, H. J. et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): a review. Glob. Planet. Change 157, 93–113 (2017).

    Article  Google Scholar 

  213. Vousdoukas, M. I. et al. Economic motivation for raising coastal flood defenses in Europe. Nat. Commun. 11, 2119 (2020).

    Article  Google Scholar 

  214. Luijendijk, A. et al. The state of the world’s beaches. Sci. Rep. 8, 6641 (2018).

    Article  Google Scholar 

  215. Mentaschi, L., Vousdoukas, M. I., Pekel, J.-F., Voukouvalas, E. & Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 8, 12876 (2018).

    Article  Google Scholar 

  216. Peduzzi, P. Sand, rarer than one thinks. Environ. Dev. 11, 208–218 (2014).

    Article  Google Scholar 

  217. Webb, A. Technical Report — an assessment of coastal processes, impacts, erosion mitigation options and beach mining (Bairiki/Nanikai causeway, Tungaru Central Hospital coastline and Bonriki runway — South Tarawa, Kiribati). EU-SOPAC Project Report Vol.46 (EU-SOPAC, 2005).

  218. McKenzie, E., Woodruff, A. & McClennen, C. Economic assessment of the true costs of aggregate mining in Majuro atoll, Republic Of The Marshall Islands (South Pacific Applied Geoscience Commission (SOPAC), 2006).

  219. De Schipper, M. A., Ludka, B. C., Raubenheimer, B., Luijendijk, A. P. & Schlaucher, T. A. Beach nourishment has complex implications for the future of sandy shores. Nat. Rev. Earth Environ. 2, 70–84 (2021).

    Article  Google Scholar 

  220. Syvitski, J. P. M. Supply and flux of sediment along hydrological pathways: research for the 21st century. Glob. Planet. Change 39, 1–11 (2003).

    Article  Google Scholar 

  221. Warrick, J. A. & Milliman, J. D. Hyperpycnal sediment discharge from semiarid southern California rivers: implications for coastal sediment budgets. Geology 31, 781–784 (2003).

    Article  Google Scholar 

  222. Milliman, J. D., Farnsworth, K. L., Jones, P. D., Xu, K. H. & Smith, L. C. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Glob. Planet. Change 62, 187–194 (2008).

    Article  Google Scholar 

  223. National Oceanic and Atmospheric Administration (NOAA). NOAA delivers new U.S. climate normals: decadal update from NCEI gives forecasters and public latest averages for 1991–2020. NOAA https://www.ncei.noaa.gov/news/noaa-delivers-new-us-climate-normals (2021).

  224. Brakenridge, G. R. et al. Calibration of satellite measurements of river discharge using a global hydrology model. J. Hydrol. 475, 123–136 (2013).

    Article  Google Scholar 

  225. Hudson, B. et al. MODIS observed increase in duration and spatial extent of sediment plumes in Greenland fjords. Cryosphere 8, 1161–1176 (2014).

    Article  Google Scholar 

  226. Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Toward improved accuracy of remote sensing approaches for quantifying suspended sediment: Implications for suspended-sediment monitoring. J. Geophys. Res. Earth Surf. 125, e2019JF005033 (2020).

    Article  Google Scholar 

  227. Brakenridge, G. R. et al. Design with nature: causation and avoidance of catastrophic flooding, Myanmar. Earth Sci. Rev. 165, 81–109 (2017).

    Article  Google Scholar 

  228. Verburg, P. H. et al. Methods and approaches to modelling the Anthropocene. Glob. Environ. Change 39, 328–340 (2016).

    Article  Google Scholar 

  229. Moragoda, N. & Cohen, S. Climate-induced trends in global riverine water discharge and suspended sediment dynamics in the 21st century. Glob. Planet. Change 191, 103199 (2020).

    Article  Google Scholar 

  230. Dunn, F. E. et al. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 14, 084034 (2019).

    Article  Google Scholar 

  231. VEMAP Members. Vegetation/ecosystem modeling and analysis project: comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Glob. Biogeochem. Cycles 9, 407–437 (1995).

    Article  Google Scholar 

  232. Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. 111, 3228–3232 (2014).

    Article  Google Scholar 

  233. Tucker, G. E. et al. CSDMS: A community platform for numerical modeling of Earth-surface processes. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2021-223 (2021).

  234. Rousseau, Y., Watson, R. A., Blanchard, J. L. & Fulton, E. A. Evolution of global marine fishing fleets and the response of fished resources. Proc. Natl Acad. Sci. USA 116, 12238–12243 (2019).

    Article  Google Scholar 

  235. Nageswara Rao, K. et al. Palaeogeography and evolution of the Godavari delta, east coast of India during the Holocene: An example of wave-dominated and fan-delta settings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 213–233 (2015).

    Article  Google Scholar 

  236. Tanabe, S., Saito, Y., Vu, Q. L., Hanebuth, T. J. J. & Ngo, Q. L. Holocene evolution of the Song Hong (Red River) delta system, northern Vietnam. Sediment. Geol. 187, 29–61 (2006).

    Article  Google Scholar 

  237. Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work is the result of efforts by the Anthropocene Working Group, of which J.S. and Y.S. are members. The authors acknowledge the insights provided by J. D. Milliman, J. Zalasiewicz and C. Waters. H.W. is funded by the National Key R&D Program of China, Ministry of Science and Technology (grant no. 2016YFA0600903).

Author information

Authors and Affiliations

Authors

Contributions

All authors developed and contributed to drafts of the text and figures. The concept for this Review was designed by J.S., J.R.A., Y.S., H.W. and D.O. All authors contributed to the manuscript contents, including final review.

Corresponding author

Correspondence to Jaia Syvitski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks F. Dunn and E. Park for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Aeolian transport

Movement of detrital particles from one place to another by wind, including over mountain tops.

Endorheic

River systems that empty into receiving waters located on the continental landmass.

Exorheic

River systems that, in a particular climate, empty into coastal receiving waters.

Dissolved load

(Qd). Portion of a stream’s total sediment load derived from biogeochemical weathering of rock and soil and carried in solution by a landscape’s drainage system.

Denudation rate

Sum of all processes that contribute to the lowering of Earth’s terrestrial surface, including erosion.

Substrate

A layer of earth material such as soil, clay, silt, sand or gravel.

Sediment yield

(Y). The transport load normalized to drainage area and can include both the dissolved and the particulate load in units of mass per area per unit time (for example t/km2 per year or g/cm2 per year).

Suspended load

(Qs). Finer particles held in suspension by fluid turbulence or colloidal suspension. Most sediment enters the coastal ocean in suspension. Qs=Qsbm+Qw. where Qsbm refers to bed-material particles occasionally transported in suspension and is comprised of the coarser suspended grains, and Qw refers to the transport mass that is rarely in contact with the bed, and largely washes through the drainage network to the coastal ocean. In aeolian transport, these dust particles can sometimes reach high into the troposphere.

Clinoform

Basinward-sloping sedimentary deposit with sigmoidal geometry, generated by lateral accretion of sediment in standing waters, and consisting of topset, foreset and bottomset sediment beds.

El Niño–Southern Oscillation

(ENSO). A fluctuation every 2–7 years in sea surface temperature (El Niño or its opposite La Nina) and the air pressure of the overlying atmosphere across the equatorial Pacific Ocean (Southern Oscillation); El Niño or its opposite (La Niña) sufficiently modify the general flow of the atmosphere to affect normal weather patterns in many parts of the world.

Southern Oscillation Index

(SOI). A standardized index based on the observed sea level pressure differences between Tahiti and Darwin, Australia, and is a measure of the large-scale fluctuations in air pressure occurring between the western and eastern tropical Pacific (the area of the Southern Oscillation) during El Niño and La Niña episodes.

Oceanic Niño Index

(ONI). NOAA’s primary indicator for monitoring El Niño and La Niña, which are opposite phases of the ENSO climate pattern; El Niño conditions prevail when ONI ≥ 0.5, indicating that the east-central tropical Pacific is much warmer than usual, and La Niña conditions exist when ONI ≤ –0.5, indicating that the region is cooler than usual.

Meghalayan Age

The most recent age of the Holocene Epoch, extending from 4,250 years before the year 2000 to the present. Also known as the late Holocene.

Greenlandian Age

The earliest age of the Holocene Epoch, extending from 11,700 years to 8,236 years before the year 2000. Also known as the early Holocene. The Northgrippian Age (the middle age of the Holocene Epoch and thus also known as the middle Holocene) extends from 8,236 years to 4,250 years before the year 2000.

Bedload

(Qb). Grains rolling, sliding or bouncing along a river channel or desert surface. Bedload dominates river transport in mountain regions or other steeper regions of the landscape that are being eroded.

Particulate load

(Qp). Detrital particles in transit, transported by water or wind as bedload (Qb) and suspended load (Qs), where Qp=Qb+Qs.

Hydraulic gradient

The change in the hydraulic head over a distance along the direction of flow path. The hydraulic gradient represents the driving force that causes water to flow in the direction of maximum decreasing total head.

Bed material load

(Qbm). Sediment grains that line the bed of a river or desert surface and with sufficient flow speed can be transported with the current, and consists of bedload and suspended bed material grains. Qbm=Qb+Qsbm

Climate normal

A 30-year interval designed to capture the variability in the climate system at a given location.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syvitski, J., Ángel, J.R., Saito, Y. et al. Earth’s sediment cycle during the Anthropocene. Nat Rev Earth Environ 3, 179–196 (2022). https://doi.org/10.1038/s43017-021-00253-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00253-w

  • Springer Nature Limited

This article is cited by

Navigation