Skip to main content

Advertisement

Log in

The pentose phosphate pathway in health and disease

  • Review Article
  • Published:

From Nature Metabolism

View current issue Submit your manuscript

Abstract

The pentose phosphate pathway (PPP) is a glucose-oxidizing pathway that runs in parallel to upper glycolysis to produce ribose 5-phosphate and nicotinamide adenine dinucleotide phosphate (NADPH). Ribose 5-phosphate is used for nucleotide synthesis, while NADPH is involved in redox homoeostasis as well as in promoting biosynthetic processes, such as the synthesis of tetrahydrofolate, deoxyribonucleotides, proline, fatty acids and cholesterol. Through NADPH, the PPP plays a critical role in suppressing oxidative stress, including in certain cancers, in which PPP inhibition may be therapeutically useful. Conversely, PPP-derived NADPH also supports purposeful cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for signalling and pathogen killing. Genetic deficiencies in the PPP occur relatively commonly in the committed pathway enzyme glucose-6-phosphate dehydrogenase (G6PD). G6PD deficiency typically manifests as haemolytic anaemia due to red cell oxidative damage but, in severe cases, also results in infections due to lack of leucocyte oxidative burst, highlighting the dual redox roles of the pathway in free radical production and detoxification. This Review discusses the PPP in mammals, covering its roles in biochemistry, physiology and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: The PPP and its modes of operation.
Fig. 2: Major NADPH-consuming pathways.
Fig. 3: Regulation of the PPP.
Fig. 4: G6PD deficiency leads to RBC and immune dysfunction.
Fig. 5: The role of oxPPP-produced NADPH in phagocyte function.
Fig. 6: Oncogenic contexts for targeting the PPP.

Similar content being viewed by others

References

  1. Hostetler, K. Y. & Landau, B. R. Estimation of the pentose cycle contribution to glucose metabolism in tissue in vivo. Biochemistry 6, 2961–2964 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Park, J. O. et al. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nat. Chem. Biol. 12, 482–489 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Christodoulou, D. et al. Reserve flux capacity in the pentose phosphate pathway by NADPH binding is conserved across kingdoms. iScience 19, 1133–1144 (2019). This study revealed that the reserve capacity of the PPP is evolutionarily conserved.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Masi, A., Mach, R. L. & Mach-Aigner, A. R. The pentose phosphate pathway in industrially relevant fungi: crucial insights for bioprocessing. Appl. Microbiol. Biotechnol. 105, 4017–4031 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liguori, I. et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 13, 757–772 (2018).

    CAS  Google Scholar 

  6. Ralser, M. et al. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J. Biol. 6, 10 (2007). This paper demonstrated that decreasing glycolytic flux can cause carbons to be redirected through the PPP.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Winterbourn, C. C., Kettle, A. J. & Hampton, M. B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 85, 765–792 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Luzzatto, L., Ally, M. & Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Blood 136, 1225–1240 (2020).

    Article  PubMed  Google Scholar 

  10. Lemons, J. M. S. et al. Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol. 8, e1000514 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Britt, E. C. et al. Switching to the cyclic pentose phosphate pathway powers the oxidative burst in activated neutrophils. Nat. Metab. 4, 389–403 (2022). This paper revealed that partial pentose cycling enables neutrophil oxidative burst by increasing NADPH production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wrigley, N. G., Heather, J. V., Bonsignore, A. & De Flora, A. Human erythrocyte glucose 6-phosphate dehydrogenase: electron microscope studies on structure and interconversion of tetramers, dimers and monomers. J. Mol. Biol. 68, 483–499 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. Garcia, A. A. et al. Stabilization of glucose-6-phosphate dehydrogenase oligomers enhances catalytic activity and stability of clinical variants. J. Biol. Chem. 298, 101610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wasylenko, T. M., Ahn, W. S. & Stephanopoulos, G. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab. Eng. 30, 27–39 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Cabezas, H., Raposo, R. R. & Meléndez-Hevia, E. Activity and metabolic roles of the pentose phosphate cycle in several rat tissues. Mol. Cell. Biochem. 201, 57–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Jung, S. M. et al. In vivo isotope tracing reveals the versatility of glucose as a brown adipose tissue substrate. Cell Rep. 36, 109459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Z. et al. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nat. Metab. 3, 1608–1620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amemiya-Kudo, M. et al. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J. Lipid Res. 43, 1220–1235 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Dentin, R., Girard, J. & Postic, C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87, 81–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Tsutomu, K., Takumi, K., Wadzinski, B. E. & Kosaku, U. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc. Natl Acad. Sci. USA 100, 5107–5112 (2003).

    Article  Google Scholar 

  21. Doiron, B., Cuif, M.-H., Chen, R. & Kahn, A. Transcriptional glucose signaling through the glucose response element is mediated by the pentose phosphate pathway. J. Biol. Chem. 271, 5321–5324 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez-Gurmaches, J. et al. Brown fat AKT2 is a cold-induced kinase that stimulates ChREBP-mediated de novo lipogenesis to optimize fuel storage and thermogenesis. Cell Metab. 27, 195–209 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Ralser, M. et al. Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response. Nat. Biotechnol. 27, 604–605 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Kitamura, H. & Motohashi, H. NRF2 addiction in cancer cells. Cancer Sci. 109, 900–911 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mitsuishi, Y. et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22, 66–79 (2012). This paper showed that enzymes in the PPP can be transcriptionally activated by NRF2.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, D. et al. Combinatorial CRISPR–Cas9 metabolic screens reveal critical redox control points dependent on the KEAP1–NRF2 regulatory axis. Mol. Cell 69, 699–708 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma, Q. Role of Nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401–426 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan, L.-J. et al. Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J. 21, 5164–5172 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cosentino, C., Grieco, D. & Costanzo, V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 30, 546–555 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Préville, X. et al. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp. Cell. Res. 247, 61–78 (1999).

    Article  PubMed  Google Scholar 

  31. Yichong, Z. et al. Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Sci. Signal. 11, eaaq0702 (2018).

    Article  Google Scholar 

  32. Christodoulou, D. et al. Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli’s rapid response to oxidative stress. Cell Syst. 6, 569–578 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Yoshida, A. & Lin, M. Regulation of glucose-6-phosphate dehydrogenase activity in red blood cells from hemolytic and nonhemolytic variant subjects. Blood 41, 877–891 (1973).

    Article  CAS  PubMed  Google Scholar 

  34. Janero, D. R., Hreniuk, D. & Sharif, H. M. Hydroperoxide-induced oxidative stress impairs heart muscle cell carbohydrate metabolism. Am. J. Physiol. 266, C179–C188 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Eaton, P., Wright, N., Hearse, D. J. & Shattock, M. J. Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. J. Mol. Cell. Cardiol. 34, 1549–1560 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Peralta, D. et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Talwar, D. et al. The GAPDH redox switch safeguards reductive capacity and enables survival of stressed tumour cells. Nat. Metab. 5, 660–676 (2023). This paper demonstrated in mammalian cells that glucose carbon flux can be redirected from glycolysis into the PPP during oxidative stress by oxidizing GADPH.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Long, C. P., Gonzalez, J. E., Feist, A. M., Palsson, B. O. & Antoniewicz, M. R. Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli. Proc. Natl Acad. Sci. USA 115, 222–227 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Amara, N. et al. Selective activation of PFKL suppresses the phagocytic oxidative burst. Cell 184, 4480–4494 (2021). This paper demonstrated that a small-molecule activator of glycolysis can limit inflammation through inhibition of the neutrophil oxidative burst.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Graham, D. B. et al. Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst. Nat. Commun. 6, 7838 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Cheung, E. C. et al. TIGAR is required for efficient intestinal regeneration and tumorigenesis. Dev. Cell 25, 463–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gerin, I. et al. Identification of TP53-induced glycolysis and apoptosis regulator (TIGAR) as the phosphoglycolate-independent 2,3-bisphosphoglycerate phosphatase. Biochem. J. 458, 439–448 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Lu, W., Wang, L., Chen, L., Hui, S. & Rabinowitz, J. D. Extraction and quantitation of nicotinamide adenine dinucleotide redox cofactors. Antioxid. Redox Signal. 28, 167–179 (2017).

    Article  PubMed  Google Scholar 

  46. Katz, J. & Wood, H. G. The use of C14O2 yields from glucose-1- and -6-C14 for the evaluation of the pathways of glucose metabolism. J. Biol. Chem. 238, 517–523 (1963). This paper established use of [1-14C]glucose and [6-14C]glucose in combination for quantification of oxPPP flux.

  47. Burki, H. R. & Okita, G. T. Effect of mammary tumor virus infection on in vivo oxidation of glucose-1-14C and glucose-6-14C in C3H mice. Cancer Res. 31, 1955–1961 (1971).

    CAS  PubMed  Google Scholar 

  48. Lee, W. N. P. et al. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose. Am. J. Physiol. 274, E843–E851 (1998). This paper established use of the [1,2-13C]glucose tracer for measurement of relative use of glucose in the PPP versus glycolysis.

  49. Metallo, C. M., Walther, J. L. & Stephanopoulos, G. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J. Biotechnol. 144, 167–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tasdogan, A. et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 577, 115–120 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Ghergurovich, J. M. et al. Local production of lactate, ribose phosphate, and amino acids by human triple-negative breast cancer. Med 2, 736–754 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Bartman, C. R. et al. Slow TCA flux and ATP production in primary solid tumours but not metastases. Nature 614, 349–357 (2023).

  53. TeSlaa, T. & Teitell, M. A. Techniques to monitor glycolysis. Methods Enzymol. 542, 91–114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. TeSlaa, T. et al. The source of glycolytic intermediates in mammalian tissues. Cell Metab. 33, 367–378 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ben‐Yoseph, O., Kingsley, P. B. & Ross, B. D. Metabolic loss of deuterium from isotopically labeled glucose. Magn. Reson. Med. 32, 405–409 (1994).

    Article  PubMed  Google Scholar 

  56. Lewis, C. A. et al. Article tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55, 253–263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, L. et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat. Metab. 1, 404–415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, L. et al. Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage. Nat. Chem. Biol. 12, 345–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fan, J. et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, Z., Chen, L., Liu, L., Su, X. & Rabinowitz, J. D. Chemical basis for deuterium labeling of fat and NADPH. J. Am. Chem. Soc. 139, 14368–14371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hong, S. et al. Live-cell imaging of NADPH production from specific pathways. CCS Chem. 3, 1642–1648 (2021).

    Article  CAS  Google Scholar 

  62. Batsios, G. et al. Imaging 6-phosphogluconolactonase activity in brain tumors in vivo using hyperpolarized δ-[1-13C]gluconolactone. Front. Oncol. 11, 1194 (2021).

    Article  Google Scholar 

  63. Moreno, K. X. et al. Hyperpolarized δ-[1-13C]gluconolactone as a probe of the pentose phosphate pathway. NMR Biomed. 30, e3713 (2017).

    Article  Google Scholar 

  64. Maraldi, T., Angeloni, C., Prata, C. & Hrelia, S. NADPH oxidases: redox regulators of stem cell fate and function. Antioxidants 10, 973 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nugud, A., Sandeep, D. & El-Serafi, A. T. Two faces of the coin: minireview for dissecting the role of reactive oxygen species in stem cell potency and lineage commitment. J. Adv. Res. 14, 73–79 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, J., Nuebel, E., Daley, G. Q., Koehler, C. M. & Teitell, M. A. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11, 589–595 (2012).

    CAS  Google Scholar 

  67. Stincone, A. et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. Camb. Philos. Soc. 90, 927–963 (2015).

    Article  PubMed  Google Scholar 

  68. Folmes, C. D. L., Dzeja, P. P., Nelson, T. J. & Terzic, A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11, 596–606 (2012).

    CAS  Google Scholar 

  69. Perales-Clemente, E., Folmes, C. D. L. & Terzic, A. Metabolic regulation of redox status in stem cells. Antioxid. Redox Signal. 21, 1648–1659 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cappellini, M. D. & Fiorelli, G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 371, 64–74 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Ruwende, C. et al. Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 376, 246–249 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Siniscalco, M. et al. Population genetics of haemoglobin variants, thalassaemia and glucose-6-phosphate dehydrogenase deficiency, with particular reference to the malaria hypothesis. Bull. World Health Organ. 34, 379–393 (1966).

    PubMed  PubMed Central  Google Scholar 

  73. Bienzle, U., Ayeni, O., Lucas, A. O. & Luzzatto, L. Glucose-6-phosphate dehydrogenase and malaria: greater resistance of females heterozygous for enzyme deficiency and of males with non-deficient variant. Lancet 299, 107–110 (1972).

    Article  Google Scholar 

  74. Allison, A. C. Glucose-6-phosphate dehydrogenase deficiency in red blood cells of East Africans. Nature 186, 531–532 (1960). This paper was among the first to connect G6PD deficiency with resistance to malaria.

    Article  CAS  PubMed  Google Scholar 

  75. Luzzatto, L., Nannelli, C. & Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Hematol. Oncol. Clin. North Am. 30, 373–393 (2016).

    Article  PubMed  Google Scholar 

  76. WHO Working Group. Glucose-6-phosphate dehydrogenase deficiency. Bull. World Health Organ. 67, 601–611 (1989).

    Google Scholar 

  77. Longo, L. et al. Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal. EMBO J. 21, 4229–4239 (2002). This paper demonstrated that complete loss of G6PD is embryonic lethal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Monsalve, A., Canals, I. & Oburoglu, L. FOXO1 regulates pentose phosphate pathway-mediated induction of developmental erythropoiesis. Front. Cell Dev. Biol. 10, 1039636 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ranzani, A. T. & Cordeiro, A. T. Mutations in the tetramer interface of human glucose‐6‐phosphate dehydrogenase reveals kinetic differences between oligomeric states. FEBS Lett. 591, 1278–1284 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Gómez-Manzo, S. et al. The stability of G6PD is affected by mutations with different clinical phenotypes. Int. J. Mol. Sci. 15, 21179–21201 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Naoki, H. et al. Long-range structural defects by pathogenic mutations in most severe glucose-6-phosphate dehydrogenase deficiency. Proc. Natl Acad. Sci. USA 118, e2022790118 (2021). This paper found that the most severe observed G6PD mutations interfere with dimerization and allosteric binding sites.

    Article  Google Scholar 

  82. Mason, P. J., Bautista, J. M. & Gilsanz, F. G6PD deficiency: the genotype–phenotype association. Blood Rev. 21, 267–283 (2007).

    Article  CAS  Google Scholar 

  83. Cunningham, A. D., Colavin, A., Huang, K. C. & Mochly-Rosen, D. Coupling between protein stability and catalytic activity determines pathogenicity of G6PD variants. Cell Rep. 18, 2592–2599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. D’Alessandro, A. et al. Hematologic and systemic metabolic alterations due to Mediterranean class II G6PD deficiency in mice. JCI Insight 6, e147056 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Holland, S. M. Chronic granulomatous disease. Clin. Rev. Allergy Immunol. 38, 3–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Cooper, M. R. et al. Complete deficiency of leukocyte glucose-6-phosphate dehydrogenase with defective bactericidal activity. J. Clin. Invest. 51, 769–778 (1972). This paper described a patient with G6PD deficiency who had features of chronic granulomatous disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roos, D. et al. Molecular basis and enzymatic properties of glucose 6-phosphate dehydrogenase volendam, leading to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections. Blood 94, 2955–2962 (1999). This paper described a patient with G6PD deficiency who experienced chronic infections and had decreased neutrophil respiratory burst.

    CAS  PubMed  Google Scholar 

  88. van Bruggen, R. et al. Deletion of leucine 61 in glucose-6-phosphate dehydrogenase leads to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections. Blood 100, 1026–1030 (2002).

    Article  PubMed  Google Scholar 

  89. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Galván-Peña, S. & O’Neill, L. A. J. Metabolic reprograming in macrophage polarization. Front. Immunol. 5, 420 (2014).

  93. Nagy, C. & Haschemi, A. Time and demand are two critical dimensions of immunometabolism: the process of macrophage activation and the pentose phosphate pathway. Front. Immunol. 6, 164 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Koo, S., Szczesny, B., Wan, X., Putluri, N. & Garg, N. J. Pentose phosphate shunt modulates reactive oxygen species and nitric oxide production controlling Trypanosoma cruzi in macrophages. Front. Immunol. 9, 202 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ma, J. et al. Glycogen metabolism regulates macrophage-mediated acute inflammatory responses. Nat. Commun. 11, 1769 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mira, H. et al. Macrophage glucose-6-phosphate dehydrogenase stimulates proinflammatory responses with oxidative stress. Mol. Cell. Biol. 33, 2425–2435 (2013).

    Article  Google Scholar 

  98. Ghergurovich, J. M. et al. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nat. Chem. Biol. 16, 731–739 (2020). This paper developed a more specific small-molecule G6PD inhibitor and found a role for the oxPPP in T cell function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bories, G. F. P. et al. Macrophage metabolic adaptation to heme detoxification involves CO-dependent activation of the pentose phosphate pathway. Blood 136, 1535–1548 (2020). This paper demonstrated that NADPH from the oxPPP is important for haem detoxification in macrophages.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wamelink, M. M. C. et al. Sedoheptulokinase deficiency due to a 57-kb deletion in cystinosis patients causes urinary accumulation of sedoheptulose: elucidation of the CARKL gene. Hum. Mutat. 29, 532–536 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Kardon, T., Stroobant, V., Veiga-da-Cunha, M. & Van Schaftingen, E. Characterization of mammalian sedoheptulokinase and mechanism of formation of erythritol in sedoheptulokinase deficiency. FEBS Lett. 582, 3330–3334 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Baardman, J. et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep. 25, 2044–2052 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kindzelskii, A. L. et al. Pregnancy alters glucose-6-phosphate dehydrogenase trafficking, cell metabolism, and oxidant release of maternal neutrophils. J. Clin. Invest. 110, 1801–1811 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Azevedo, E. P. et al. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril- and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J. Biol. Chem. 290, 22174–22183 (2015). This paper found that the PPP supports NET formation in neutrophils.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, Y. et al. Neutrophil metabolomics in severe COVID-19 reveal GAPDH as a suppressor of neutrophil extracellular trap formation. Nat. Commun. 14, 2610 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Woody, R. C., Steele, R. W., Knapple, W. L. & Pilkington, N. S. Jr. Impaired neutrophil function in children with seizures treated with the ketogenic diet. J. Pediatr. 115, 427–430 (1989).

  108. Wong, S. L. et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 21, 815–819 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gerriets, V. A. & Rathmell, J. C. Metabolic pathways in T cell fate and function. Trends Immunol. 33, 168–173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Klein Geltink, R. I., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36, 461–488 (2018).

    Article  PubMed Central  Google Scholar 

  111. Ron-Harel, N. et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 24, 104–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Field, C. S. et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function. Cell Metab. 31, 422–437 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Klein Geltink, R. I. et al. Metabolic conditioning of CD8+ effector T cells for adoptive cell therapy. Nat. Metab. 2, 703–716 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Yang, Z. et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci. Transl. Med. 8, 331ra38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Weyand, C. M., Shen, Y. & Goronzy, J. J. Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radic. Biol. Med. 125, 36–43 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Daneshmandi, S., Cassel, T., Higashi, R. M., Fan, T. W.-M. & Seth, P. 6-Phosphogluconate dehydrogenase (6PGD), a key checkpoint in reprogramming of regulatory T cells metabolism and function. eLife 10, e67476 (2021). This paper found that mice with 6PGD-deficient regulatory T cells die at an early age owing to autoimmune disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu, Q. et al. Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics. Nat. Metab. 4, 559–574 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Daneshmandi, S. et al. Blockade of 6-phosphogluconate dehydrogenase generates CD8+ effector T cells with enhanced anti-tumor function. Cell Rep. 34, 108831 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu, Y. et al. Glucose-6-phosphate dehydrogenase-deficient mice have increased renal oxidative stress and increased albuminuria. FASEB J. 24, 609–616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jain, M. et al. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes. Circ. Res. 93, e9–e16 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Hecker, P. A. et al. Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure. Circ. Heart Fail. 6, 118–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Thomas, J. E. et al. Glucose-6-phosphate dehydrogenase deficiency is associated with cardiovascular disease in U.S. military centers. Tex. Heart Inst. J. 45, 144–150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Spencer, N. Y. & Stanton, R. C. Glucose 6-phosphate dehydrogenase and the kidney. Curr. Opin. Nephrol. Hypertens. 26, 43–49 (2017).

    Article  CAS  Google Scholar 

  127. Tiwari, M. Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: mapping diagnostic and therapeutic opportunities. Genes Dis. 4, 196–203 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kuehne, A. et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol. Cell 59, 359–371 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Saghi, A., Gao, J.-L., Giampietro, L., letchuman, S. & Amiri-Ardekani, E. A mechanistic analysis of henna in G6PD deficiency patients. Toxicol. Anal. Clin. 35, 23–32 (2023).

    Google Scholar 

  130. Weber, G. & Korting, G. Glucose-6-phosphate dehydrogenase in human skin. J. Invest. Dermatol. 42, 167–169 (1964).

    Article  CAS  PubMed  Google Scholar 

  131. Agrawal, D., Shajil, E. M., Marfatia, Y. S. & Begum, R. Study on the antioxidant status of vitiligo patients of different age groups in Baroda. Pigment Cell Res. 17, 289–294 (2004).

    Article  PubMed  Google Scholar 

  132. Farahi-Jahromy, A. et al. Decreased glucose-6-phosphate dehydrogenase levels in vitiligo patients: further evidence of oxidative stress. Adv. Biomed. Res. 3, 34 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zackheim, H. S. Treatment of psoriasis with 6-aminonicotinamide. Arch. Dermatol. 111, 880–882 (1975).

    Article  CAS  PubMed  Google Scholar 

  134. Nakayama, H. & Weser, E. Adaptation of small bowel after intestinal resection: increase in the pentose phosphate pathway. Biochem. Biophys. Acta Gen. Subj. 279, 416–423 (1972).

    Article  CAS  Google Scholar 

  135. Tian, N. et al. TKT maintains intestinal ATP production and inhibits apoptosis-induced colitis. Cell Death Dis. 12, 853 (2021).

    CAS  Google Scholar 

  136. Cao, L. et al. G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway. Free Radic. Biol. Med. 112, 433–444 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Vetrovoy, O. et al. Neuroprotective mechanism of hypoxic post-conditioning involves HIF1-associated regulation of the pentose phosphate pathway in rat brain. Neurochem. Res. 44, 1425–1436 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Jain, M. et al. Increased myocardial dysfunction after ischemia–reperfusion in mice lacking glucose-6-phosphate dehydrogenase. Circulation 109, 898–903 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Fan, W., Lu, D., Shi, X. & He, H. Flux of glucose through pentose phosphate pathway and glycolysis in mouse hearts subjected to low-flow ischemia. FASEB J. 34, 29–38 (2020).

    Article  Google Scholar 

  140. Pes, G. M., Errigo, A., Soro, S., Longo, N. P. & Dore, M. P. Glucose-6-phosphate dehydrogenase deficiency reduces susceptibility to cancer of endodermal origin. Acta Oncol. 58, 1205–1211 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Dore, M. P., Davoli, A., Longo, N., Marras, G. & Pes, G. M. Glucose-6-phosphate dehydrogenase deficiency and risk of colorectal cancer in northern Sardinia: a retrospective observational study. Medicine 95, e5254 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gill, J. G., Piskounova, E. & Morrison, S. J. Cancer, oxidative stress, and metastasis. Cold Spring Harb. Symp. Quant. Biol. 81, 163–175 (2016).

    Google Scholar 

  143. Chandel, N. S. & Tuveson, D. A. The promise and perils of antioxidants for cancer patients. N. Engl. J. Med. 371, 177–178 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, Y. et al. Upregulation of antioxidant capacity and nucleotide precursor availability suffices for oncogenic transformation. Cell Metab. 33, 94–109 (2021). This paper found that overexpression of G6PD is sufficient for oncogenic transformation.

    Article  CAS  PubMed  Google Scholar 

  145. Ghergurovich, J. M. et al. Glucose-6-phosphate dehydrogenase is not essential for K-Ras-driven tumor growth or metastasis. Cancer Res. 80, 3820–3829 (2020). This paper demonstrated that the oxPPP is not required for tumour growth in several cancer models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kristell, L. G. et al. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med. 7, 308re8 (2015).

    Google Scholar 

  148. Cha, Y. J., Jung, W. H. & Koo, J. S. Differential site-based expression of pentose phosphate pathway-related proteins among breast cancer metastases. Dis. Markers 2017, 7062517 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Aurora, A. B. et al. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells. Proc. Natl Acad. Sci. USA 119, e2120617119 (2022). This paper found that the oxPPP promotes tumour metastasis by combating associated oxidative stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Consortium, T. A. P. G. et al. AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7, 818–831 (2017).

    Article  Google Scholar 

  151. Di Federico, A., De Giglio, A., Parisi, C. & Gelsomino, F. STK11/LKB1 and KEAP1 mutations in non-small cell lung cancer: prognostic rather than predictive? Eur. J. Cancer 157, 108–113 (2021).

    Article  PubMed  Google Scholar 

  152. Marinelli, D. et al. KEAP1-driven co-mutations in lung adenocarcinoma unresponsive to immunotherapy despite high tumor mutational burden. Ann. Oncol. 31, 1746–1754 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Dempke, W. C. M. & Reck, M. KEAP1/NRF2 (NFE2L2) mutations in NSCLC—fuel for a superresistant phenotype? Lung Cancer 159, 10–17 (2021).

    Article  CAS  Google Scholar 

  154. Best, S. A. et al. Distinct initiating events underpin the immune and metabolic heterogeneity of KRAS-mutant lung adenocarcinoma. Nat. Commun. 10, 4190 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bhanot, H. et al. Acute myeloid leukemia cells require 6-phosphogluconate dehydrogenase for cell growth and NADPH-dependent metabolic reprogramming. Oncotarget 8, 67639–67650 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Badur, M. G. et al. Oncogenic R132 IDH1 mutations limit NADPH for de novo lipogenesis through (D)2-hydroxyglutarate production in fibrosarcoma cells. Cell Rep. 25, 1018–1026 (2018).

    Article  Google Scholar 

  157. Gelman, S. J. et al. Consumption of NADPH for 2-HG synthesis increases pentose phosphate pathway flux and sensitizes cells to oxidative stress. Cell Rep. 22, 512–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhao, F. et al. Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1α-induced metabolic reprograming. Oncogene 29, 2962–2972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tseng, C.-W. et al. Transketolase regulates the metabolic switch to control breast cancer cell metastasis via the α-ketoglutarate signaling pathway. Cancer Res. 78, 2799–2812 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Ricciardelli, C. et al. Transketolase is upregulated in metastatic peritoneal implants and promotes ovarian cancer cell proliferation. Clin. Exp. Metastasis 32, 441–455 (2015).

    CAS  Google Scholar 

  161. Li, M. et al. Transketolase promotes colorectal cancer metastasis through regulating AKT phosphorylation. Cell Death Dis. 13, 99 (2022).

    CAS  Google Scholar 

  162. Huang, J. et al. Understanding anthracycline cardiotoxicity from mitochondrial aspect. Front. Pharmacol 13, 811406 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ma, L. & Cheng, Q. Inhibiting 6-phosphogluconate dehydrogenase reverses doxorubicin resistance in anaplastic thyroid cancer via inhibiting NADPH-dependent metabolic reprogramming. Biochem. Biophys. Res. Commun. 498, 912–917 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Polimeni, M. et al. Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity. Biochem. J. 439, 141–149 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Kleih, M. et al. Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis. 10, 851 (2019).

    Google Scholar 

  166. Ju, H. Q. et al. Disrupting G6PD-mediated redox homeostasis enhances chemosensitivity in colorectal cancer. Oncogene 36, 6282–6292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang, X. et al. lncRNA-encoded pep-AP attenuates the pentose phosphate pathway and sensitizes colorectal cancer cells to oxaliplatin. EMBO Rep. 23, e53140 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Gao, W. C. et al. Targeting oxidative pentose phosphate pathway prevents recurrence in mutant Kras colorectal carcinomas. PLoS Biol. 17, e3000425 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Li, Q. et al. Rac1 activates non-oxidative pentose phosphate pathway to induce chemoresistance of breast cancer. Nat. Commun. 11, 1456 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gunda, V. et al. MUC1-mediated metabolic alterations regulate response to radiotherapy in pancreatic cancer. Clin. Cancer Res. 23, 5881–5891 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Vaziri-Gohar, A. et al. Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors. Nat. Cancer 3, 852–865 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ding, H. et al. Activation of the NRF2 antioxidant program sensitizes tumors to G6PD inhibition. Sci. Adv. 7, eabk1023 (2021). This paper found that KEAP1-mutant tumours are sensitive to oxPPP inhibition.

  173. Benhar, M., Forrester, M. T. & Stamler, J. S. Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat. Rev. Mol. Cell Biol. 10, 721–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  174. Gamper, N. & Ooi, L. Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxid. Redox Signal. 22, 486–504 (2014).

    Article  PubMed  Google Scholar 

  175. Tejero, J., Shiva, S. & Gladwin, M. T. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol. Rev. 99, 311–379 (2018).

    Article  PubMed Central  Google Scholar 

  176. Block, K. & Gorin, Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat. Rev. Cancer 12, 627–637 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Moloney, J. N. & Cotter, T. G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 80, 50–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Michaelson, L. P., Iler, C. & Ward, C. W. ROS and RNS signaling in skeletal muscle: critical signals and therapeutic targets. Annu. Rev. Nurs. Res. 31, 367–387 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Tochhawng, L., Deng, S., Pervaiz, S. & Yap, C. T. Redox regulation of cancer cell migration and invasion. Mitochondrion 13, 246–253 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Rappez, L. et al. SpaceM reveals metabolic states of single cells. Nat. Methods 18, 799–805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tian, H. et al. Multi-modal mass spectrometry imaging reveals single-cell metabolic states in mammalian liver. Preprint at bioRxiv https://doi.org/10.1101/2022.09.26.508878 (2022).

  182. Tian, H., Sheraz née Rabbani, S., Vickerman, J. C. & Winograd, N. Multiomics imaging using high-energy water gas cluster ion beam secondary ion mass spectrometry [(H2O)n-GCIB-SIMS] of frozen-hydrated cells and tissue. Anal. Chem. 93, 7808–7814 (2021).

  183. Pareek, V., Tian, H., Winograd, N. & Benkovic, S. J. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science 368, 283–290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tao, R. et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat. Methods 14, 720–728 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Cameron, W. D. et al. Apollo-NADP+: a spectrally tunable family of genetically encoded sensors for NADP+. Nat. Methods 13, 352–358 (2016).

    Article  PubMed  Google Scholar 

  186. Zhao, F.-L., Zhang, C., Zhang, C., Tang, Y. & Ye, B.-C. A genetically encoded biosensor for in vitro and in vivo detection of NADP. Biosens. Bioelectron. 77, 901–906 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Zhao, Y. et al. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD+/NADH redox state. Nat. Protoc. 11, 1345–1359 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Zhang, Z., Cheng, X., Zhao, Y. & Yang, Y. Lighting up live-cell and in vivo central carbon metabolism with genetically encoded fluorescent sensors. Annu. Rev. Anal. Chem. 13, 293–314 (2020).

    Article  CAS  Google Scholar 

  189. Cracan, V., Titov, D. V., Shen, H., Grabarek, Z. & Mootha, V. K. A genetically encoded tool for manipulation of NADP+/NADPH in living cells. Nat. Chem. Biol. 13, 1088–1095 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Köhler, E., Barrach, H.-J. & Neubert, D. Inhibition of NADP dependent oxidoreductases by the 6‐aminonicotinamide analogue of NADP. FEBS Lett. 6, 225–228 (1970).

    Article  PubMed  Google Scholar 

  191. Hwang, S. et al. Correcting glucose-6-phosphate dehydrogenase deficiency with a small-molecule activator. Nat. Commun. 9, 4045 (2018). This paper found a small-molecule G6PD activator that can increase activity and thermostability of Canton mutant R459L, opening the door for a potential therapeutic for G6PD deficiency.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Raub, A. G. et al. Small-molecule activators of glucose-6-phosphate dehydrogenase (G6PD) bridging the dimer interface. ChemMedChem 14, 1321–1324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by NIH R01CA163591, NIH DP1DK113643, Ludwig Cancer Research and Stand Up to Cancer SU2CAACR-DT-20-16 to J.D.R; NIH R35GM147014 to J.F.

Author information

Authors and Affiliations

Authors

Contributions

T.T., M.R., J.F. and J.D.R. wrote the paper. T.T. prepared the figures.

Corresponding authors

Correspondence to Tara TeSlaa or Joshua D. Rabinowitz.

Ethics declarations

Competing interests

J.D.R. is an advisor and stockholder in Colorado Research Partners, LEAF Pharmaceuticals, Empress Therapeutics and Bantam Pharmaceutical; a paid consultant of Pfizer and Third Rock Ventures; a founder, director and stockholder of Farber Partners, Raze Therapeutics and Sofro Pharmaceuticals; a cofounder and stockholder in Marea Therapeutics; and a director of the Princeton University–PKU Shenzhen collaboration. All other authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Nissim Hay and the other, anonymous, reviewer for their contribution to the peer review of this work. Primary Handling Editor: Alfredo Giménez-Cassina, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TeSlaa, T., Ralser, M., Fan, J. et al. The pentose phosphate pathway in health and disease. Nat Metab 5, 1275–1289 (2023). https://doi.org/10.1038/s42255-023-00863-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00863-2

  • Springer Nature Limited

This article is cited by

Navigation