Skip to main content

Advertisement

Log in

Mitochondrial lipoylation integrates age-associated decline in brown fat thermogenesis

  • Article
  • Published:

From Nature Metabolism

View current issue Submit your manuscript

Abstract

Thermogenesis in brown adipose tissue (BAT) declines with age; however, what regulates this process is poorly understood. Here, we identify mitochondrial lipoylation as a previously unappreciated molecular hallmark of aged BAT in mice. Using mitochondrial proteomics, we show that mitochondrial lipoylation is disproportionally reduced in aged BAT through a post-transcriptional decrease in the iron–sulfur (Fe–S) cluster formation pathway. A defect in Fe–S cluster formation by the fat-specific deletion of Bola3 significantly reduces mitochondrial lipoylation and fuel oxidation in BAT, leading to glucose intolerance and obesity. In turn, enhanced mitochondrial lipoylation by α-lipoic acid supplementation effectively restores BAT function in old mice, thereby preventing age-associated obesity and glucose intolerance. The effect of α-lipoic acids requires mitochondrial lipoylation via the BOLA3 pathway and does not depend on the antioxidant activity of α-lipoic acid. These results open up the possibility of alleviating age-associated decline in energy expenditure by enhancing the mitochondrial lipoylation pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Age-associated decline in BAT thermogenesis is coupled with a post-transcriptional impairment in the mitochondrial fuel oxidation pathway.
Fig. 2: Reduced mitochondrial lipoylation and iron–sulfur cluster formation in aged BAT.
Fig. 3: A requirement of mitochondrial lipoylation for fuel use and thermogenesis in BAT.
Fig. 4: Mitochondrial lipoylation in BAT is required for whole-body energy homoeostasis and glucose metabolism.
Fig. 5: Age-dependent effects of α-lipoic acid supplementation in mice and humans.
Fig. 6: Enhanced mitochondrial lipoylation by α-lipoic acid supplementation restores BAT activity in aged mice via the BOLA3 pathway.

Similar content being viewed by others

Data availability

The proteomics data used in this study have been deposited with the ProteomeXchange Consortium under accession nos. PXD013410 (Age-associated mouse brown adipose tissue mitochondrial proteome), PXD014143 (Bola3 KO mouse brown adipose tissue mitochondrial proteome) and PXD014080 (Lipoylated proteins complex in mouse brown adipose tissue). The RNA-Seq data have been deposited with ArrayExpress under accession no. E-MTAB-7445 (RNA-Seq of age-associated transcriptome changes in brown adipose tissue). The data supporting the findings of this study are available from the corresponding author upon request.

References

  1. Sidossis, L. & Kajimura, S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J. Clin. Invest. 125, 478–486 (2015).

    Article  Google Scholar 

  2. Kajimura, S., Spiegelman, B. M. & Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015).

    Article  CAS  Google Scholar 

  3. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  Google Scholar 

  4. Ouellet, V. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122, 545–552 (2012).

    Article  Google Scholar 

  5. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  Google Scholar 

  6. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  Google Scholar 

  7. Chouchani, E. T. & Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab. 1, 189–200 (2019).

    Article  Google Scholar 

  8. Lee, P. et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63, 3686–3698 (2014).

    Article  CAS  Google Scholar 

  9. Hanssen, M. J. et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 21, 863–865 (2015).

    Article  CAS  Google Scholar 

  10. Chondronikola, M. et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63, 4089–4099 (2014).

    Article  CAS  Google Scholar 

  11. Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    Article  CAS  Google Scholar 

  12. Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017).

    Article  CAS  Google Scholar 

  13. Yoneshiro, T. et al. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring) 19, 1755–1760 (2011).

    Article  Google Scholar 

  14. Pfannenberg, C. et al. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59, 1789–1793 (2010).

    Article  CAS  Google Scholar 

  15. Matsushita, M. et al. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int. J. Obes. 38, 812–817 (2014).

    Article  CAS  Google Scholar 

  16. Horan, M. A., Little, R. A., Rothwell, N. J. & Stock, M. J. Changes in body composition, brown adipose tissue activity and thermogenic capacity in BN/BiRij rats undergoing senescence. Exp. Gerontol. 23, 455–461 (1988).

    Article  CAS  Google Scholar 

  17. McDonald, R. B., Horwitz, B. A., Hamilton, J. S. & Stern, J. S. Cold- and norepinephrine-induced thermogenesis in younger and older Fischer 344 rats. Am. J. Physiol. 254, R457–R462 (1988).

    CAS  PubMed  Google Scholar 

  18. Scarpace, P. J., Matheny, M. & Borst, S. E. Thermogenesis and mitochondrial GDP binding with age in response to the novel agonist CGP-12177A. Am. J. Physiol. 262, E185–E190 (1992).

    CAS  PubMed  Google Scholar 

  19. Florez-Duquet, M., Horwitz, B. A. & McDonald, R. B. Cellular proliferation and UCP content in brown adipose tissue of cold-exposed aging Fischer 344 rats. Am. J. Physiol. 274, R196–R203 (1998).

    CAS  PubMed  Google Scholar 

  20. Olsen, J. M. et al. β3-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: mediation through the mTOR pathway. Mol. Metab. 6, 611–619 (2017).

    Article  CAS  Google Scholar 

  21. Berry, D. C. et al. Cellular aging contributes to failure of cold-induced beige adipocyte formation in old mice and humans. Cell Metab. 25, 481 (2017).

    Article  CAS  Google Scholar 

  22. Florez-Duquet, M. & McDonald, R. B. Cold-induced thermoregulation and biological aging. Physiol. Rev. 78, 339–358 (1998).

    Article  CAS  Google Scholar 

  23. Collins, S. β-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front. Endocrinol. (Lausanne) 2, 102 (2012).

    Google Scholar 

  24. Rogers, N. H., Landa, A., Park, S. & Smith, R. G. Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue. Aging Cell 11, 1074–1083 (2012).

    Article  CAS  Google Scholar 

  25. Patel, M. S., Nemeria, N. S., Furey, W. & Jordan, F. The pyruvate dehydrogenase complexes: structure-based function and regulation. J. Biol. Chem. 289, 16615–16623 (2014).

    Article  CAS  Google Scholar 

  26. Bachman, E. S. et al. βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843–845 (2002).

    Article  CAS  Google Scholar 

  27. Rowland, E. A., Snowden, C. K. & Cristea, I. M. Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease. Curr. Opin. Chem. Biol. 42, 76–85 (2018).

    Article  CAS  Google Scholar 

  28. Schonauer, M. S., Kastaniotis, A. J., Kursu, V. A., Hiltunen, J. K. & Dieckmann, C. L. Lipoic acid synthesis and attachment in yeast mitochondria. J. Biol. Chem. 284, 23234–23242 (2009).

    Article  CAS  Google Scholar 

  29. Cicchillo, R. M. et al. Lipoyl synthase requires two equivalents of S-adenosyl-L-methionine to synthesize one equivalent of lipoic acid. Biochemistry 43, 6378–6386 (2004).

    Article  CAS  Google Scholar 

  30. Cameron, J. M. et al. Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am. J. Hum. Genet. 89, 486–495 (2011).

    Article  CAS  Google Scholar 

  31. Lebigot, E. et al. Impact of mutations within the [Fe-S] cluster or the lipoic acid biosynthesis pathways on mitochondrial protein expression profiles in fibroblasts from patients. Mol. Genet. Metab. 122, 85–94 (2017).

    Article  CAS  Google Scholar 

  32. Baker, P. R. 2nd et al. Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 137, 366–379 (2014).

    Article  Google Scholar 

  33. Haack, T. B. et al. Homozygous missense mutation in BOLA3 causes multiple mitochondrial dysfunctions syndrome in two siblings. J. Inherit. Metab. Dis. 36, 55–62 (2013).

    Article  CAS  Google Scholar 

  34. Jacob, S. et al. The antioxidant α-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle. Diabetes 45, 1024–1029 (1996).

    Article  CAS  Google Scholar 

  35. Kim, M. S. et al. Anti-obesity effects of α-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat. Med. 10, 727–733 (2004).

    Article  CAS  Google Scholar 

  36. Koh, E. H. et al. Effects of alpha-lipoic acid on body weight in obese subjects. Am. J. Med. 124, 85.e1–85.e8 (2011).

    Article  CAS  Google Scholar 

  37. Huerta, A. E., Navas-Carretero, S., Prieto-Hontoria, P. L., Martínez, J. A. & Moreno-Aliaga, M. J. Effects of α-lipoic acid and eicosapentaenoic acid in overweight and obese women during weight loss. Obesity (Silver Spring) 23, 313–321 (2015).

    Article  CAS  Google Scholar 

  38. Namazi, N., Larijani, B. & Azadbakht, L. Alpha-lipoic acid supplement in obesity treatment: a systematic review and meta-analysis of clinical trials. Clin. Nutr. 37, 419–428 (2018).

    Article  CAS  Google Scholar 

  39. Xiang, X., Pu, J., Yue, L., Hou, J. & Sun, H. α-Lipoic acid can improve endothelial dysfunction in subjects with impaired fasting glucose. Metabolism 60, 480–485 (2011).

    Article  CAS  Google Scholar 

  40. Zhang, Y. et al. Amelioration of lipid abnormalities by α-lipoic acid through antioxidative and anti-inflammatory effects. Obesity 19, 1647–1653 (2011).

    Article  CAS  Google Scholar 

  41. Capasso, I. et al. Combination of inositol and alpha lipoic acid in metabolic syndrome-affected women: a randomized placebo-controlled trial. Trials 14, 273 (2011).

    Article  Google Scholar 

  42. Huang, Z. et al. Short-term continuous subcutaneous insulin infusion combined with insulin sensitizers rosiglitazone, metformin, or antioxidant α-lipoic acid in patients with newly diagnosed type 2 diabetes mellitus. Diabetes Technol Ther. 15, 859–869 (2013).

    Article  CAS  Google Scholar 

  43. Manning, P. J. et al. The effect of lipoic acid and vitamin E therapies in individuals with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 23, 543–549 (2013).

    Article  CAS  Google Scholar 

  44. Zhao, L. & Hu, F. X. α-Lipoic acid treatment of aged type 2 diabetes mellitus complicated with acute cerebral infarction. Eur. Rev. Med. Pharmacol. Sci. 18, 3715–3719 (2014).

    CAS  PubMed  Google Scholar 

  45. Soare, A., Weiss, E. P., Holloszy, J. O. & Fontana, L. Multiple dietary supplements do not affect metabolic and cardiovascular health. Aging 6, 149–157 (2014).

    Article  Google Scholar 

  46. Derosa, G., D’Angelo, A., Romano, D. & Maffioli, P. A clinical trial about a food supplement containing α-lipoic acid on oxidative stress markers in type 2 diabetic patients. Int. J. Mol. Sci. 17, 1802 (2016).

    Article  Google Scholar 

  47. Cicero, A. F. G. et al. Nutraceutical effects on glucose and lipid metabolism in patients with impaired fasting glucose: a pilot, double-blind, placebo-controlled, randomized clinical trial on a combined product. High Blood Press. Cardiovasc. Prev. 24, 283–288 (2017).

    Article  CAS  Google Scholar 

  48. Heinisch, B. B. et al. Alpha-lipoic acid improves vascular endothelial function in patients with type 2 diabetes: a placebo-controlled randomized trial. Eur. J. Clin. Invest. 40, 148–154 (2010).

    Article  CAS  Google Scholar 

  49. Mitkov, M. D., Aleksandrova, I. Y. & Orbetzova, M. M. Effect of transdermal testosterone or alpha-lipoic acid on erectile dysfunction and quality of life in patients with type 2 diabetes mellitus. Folia Med (Plovdiv) 55, 55–63 (2013).

    Article  CAS  Google Scholar 

  50. Fernández-Galilea, M. et al. α-Lipoic acid treatment increases mitochondrial biogenesis and promotes beige adipose features in subcutaneous adipocytes from overweight/obese subjects. Biochim. Biophys. Acta 1851, 273–281 (2015).

    Article  Google Scholar 

  51. Suh, J. H. et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc. Natl Acad. Sci. USA 101, 3381–3386 (2004).

    Article  CAS  Google Scholar 

  52. Packer, L., Witt, E. H. & Tritschler, H. J. alpha-Lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 19, 227–250 (1995).

    Article  CAS  Google Scholar 

  53. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  Google Scholar 

  54. Mathias, R. A. et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159, 1615–1625 (2014).

    Article  CAS  Google Scholar 

  55. Wang, Y., Li, X., Guo, Y., Chan, L. & Guan, X. α-Lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-γ coactivator-1α signaling in the skeletal muscle of aged mice. Metabolism 59, 967–976 (2010).

    Article  CAS  Google Scholar 

  56. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  Google Scholar 

  57. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  58. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  CAS  Google Scholar 

  59. Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A. & Vingron, M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18, S96–S104 (2002).

    Article  Google Scholar 

  60. Gatto, L. & Lilley, K. S. MSnbase: an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28, 288–289 (2012).

    Article  CAS  Google Scholar 

  61. Tripathi, S. et al. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18, 723–735 (2015).

    Article  CAS  Google Scholar 

  62. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  Google Scholar 

  63. Peng, J. & Gygi, S. P. Proteomics: the move to mixtures. J. Mass Spectrom. 36, 1083–1091 (2001).

    Article  CAS  Google Scholar 

  64. Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  65. Rogers, G. W. et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS ONE 6, e21746 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Huynh and Y. Seo at the UCSF Imaging Center for their support in the [18F]-FDG PET–CT imaging, C. Paillart for his support in the Comprehensive Lab Animal Monitoring System study, Z. Brown for his editorial help and R. Panda and S. Giacometti for their support in the analysis for RNA-Seq. We also thank T. Hagen at the Linus Pauling Institute for his suggestions. This work was supported by National Institutes of Health (NIH) grants (nos. DK97441 and DK108822), the NIH Office of Dietary Supplements and the Edward Mallinckrodt, Jr. Foundation to S.K., NIH grant no. DK107583 to J.W. and a JSPS grants-in-aid for scientific research grant (no. 17H03605) to H-Y.C and Y.I. K.T., K.I. and Y.O. are supported by the Manpei Suzuki Diabetes Foundation. T.Y. is supported by the JSPS Overseas Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.T. and S.K. conceived the study and designed the experiments. K.T., K.I., T.Y. and Y.O. performed the animal and cell experiments. H.-Y.C., C.-H.C. and Y.I. performed the mitochondrial proteomics. H.J. and J.W. performed the experiments using β-less mice. K.T., K.I., H.-Y.C., T.Y., Y.O., Y.I. and S.K. analysed and interpreted the data. K.T. and S.K. wrote the manuscript. K.T., Y.I. and S.K. edited the manuscript.

Corresponding author

Correspondence to Shingo Kajimura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editor Christoph Schmitt.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 4–6

Reporting Summary

Supplementary Table 1

List of the downregulated mitochondrial proteins in old mice.

Supplementary Table 2

List of the lipoic acid-interacting mitochondrial proteins in iBAT.

Supplementary Table 3

List of the downregulated mitochondrial proteins in adipo-Bola3 knockout mice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajima, K., Ikeda, K., Chang, HY. et al. Mitochondrial lipoylation integrates age-associated decline in brown fat thermogenesis. Nat Metab 1, 886–898 (2019). https://doi.org/10.1038/s42255-019-0106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0106-z

  • Springer Nature Limited

This article is cited by

Navigation