Skip to main content
Log in

Activation of light alkanes at room temperature and ambient pressure

  • Article
  • Published:

From Nature Catalysis

View current issue Submit your manuscript

Abstract

Light alkane activation under mild conditions remains a substantial challenge. Here we report an aqueous reaction system capable of selectively converting light alkanes into corresponding olefins and oxygenates at room temperature and ambient pressure using Cu powder as the catalyst and O2 as the oxidant. In ethane activation, we achieved a combined production of ethylene and acetic acid at a rate of 2.27 mmol gCu−1 h−1, with a combined selectivity up to 97%. Propane is converted to propylene with a selectivity up to 94% and a production rate up to 1.83 mmol gCu−1 h−1, while methane is converted mainly to carbon dioxide, methanol and acetic acid. On the basis of catalytic experiments, isotopic labelling experiments, spectroscopic insights and density functional theory calculations, we put forward mechanistic understandings in which the C–H bond is activated by the surface oxide species generated during the oxidation process, forming alkyl groups as key reaction intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Light alkane activation with different O2 mole fractions in the feed at room temperature.
Fig. 2: Isotopic labelling investigation of ethane activation.
Fig. 3: Rate and product distribution of ethane activation.
Fig. 4: In situ SERS of ethane, propane and methane activation.
Fig. 5: Theoretical investigations on the mechanism for ethane activation.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its supplementary information files. All data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Yuan, S. et al. Conversion of methane into liquid fuels—bridging thermal catalysis with electrocatalysis. Adv. Energy Mater. 10, 2002154 (2020).

    Article  CAS  Google Scholar 

  2. Zhang, H., Li, C., Lu, Q., Cheng, M. J. & Goddard, W. A. III Selective activation of propane using intermediates generated during water oxidation. J. Am. Chem. Soc. 143, 3967–3974 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Galvita, V., Siddiqi, G., Sun, P. & Bell, A. T. Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts. J. Catal. 271, 209–219 (2010).

    Article  CAS  Google Scholar 

  4. Sun, P., Siddiqi, G., Chi, M. & Bell, A. T. Synthesis and characterization of a new catalyst Pt/Mg(Ga)(Al)O for alkane dehydrogenation. J. Catal. 274, 192–199 (2010).

    Article  CAS  Google Scholar 

  5. Phadke, N. M., Mansoor, E., Bondil, M., Head-Gordon, M. & Bell, A. T. Mechanism and kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3. J. Am. Chem. Soc. 141, 1614–1627 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Sobolev, V. I., Dubkov, K. A., Panna, O. V. & Panov, G. I. Selective oxidation of methane to methanol on a FeZSM-5 surface. Catal. Today 24, 251–252 (1995).

    Article  CAS  Google Scholar 

  7. Starokon, E. V. et al. Oxidation of methane to methanol on the surface of FeZSM-5 zeolite. J. Catal. 300, 47–54 (2013).

    Article  CAS  Google Scholar 

  8. Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Periana, R. A. et al. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259, 340–343 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Periana, R. A. et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Hashiguchi, B. G. et al. Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters. Science 343, 1232–1237 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, R. S. & Surendranath, Y. Electrochemical reoxidation enables continuous methane-to-methanol catalysis with aqueous Pt salts. ACS Cent. Sci. 5, 1179–1186 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murahashi, S. I., Oda, Y., Naota, T. & Komiya, N. Aerobic oxidations of alkanes and alkenes in the presence of aldehydes catalyzed by copper salts. J. Chem. Soc. Chem. Commun. 139–140 (1993).

  14. Komiya, N., Naota, T., Oda, Y. & Murahashi, S.-I. Aerobic oxidation of alkanes and alkenes in the presence of aldehydes catalyzed by copper salts and copper-crown ether. J. Mol. Catal. A 117, 21–37 (1997).

    Article  CAS  Google Scholar 

  15. Zhao, Y. et al. Speciation of Cu surfaces during the electrochemical CO reduction reaction. J. Am. Chem. Soc. 142, 9735–9743 (2020).

    CAS  PubMed  Google Scholar 

  16. Dong, J. C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2018).

    Article  Google Scholar 

  17. Chan, H. Y. H., Takoudis, C. G. & Weaver, M. J. Oxide film formation and oxygen adsorption on copper in aqueous media as probed by surface-enhanced Raman spectroscopy. J. Phys. Chem. B 103, 357–365 (1998).

    Article  Google Scholar 

  18. Bodappa, N. et al. Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopy. J. Am. Chem. Soc. 141, 12192–12196 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Phillips, D. L., Lawrence, B. A. & Valentini, J. J. Substituent effects on gas-phase photodissociation dynamics: resonance Raman spectra of ethyl iodide, isopropyl iodide, and tert-butyl iodide. J. Phys. Chem. 95, 9085–9091 (1991).

    Article  CAS  Google Scholar 

  20. Street, S. C. & Gellman, A. J. FT-IRAS of adsorbed alkoxides: 1-propoxide on Cu(111). Surf. Sci. 372, 223–238 (1997).

    Article  CAS  Google Scholar 

  21. Jenks, C. J., Bent, B. E., Bernstein, N. & Zaera, F. The chemistry of alkyl iodides on copper surfaces. 1. Adsorption geometry. J. Phys. Chem. B 104, 3008–3016 (2000).

    Article  CAS  Google Scholar 

  22. Lin, J. L. & Bent, B. E. C-H vibrational mode-softening in alkyl-groups bound to Cu(111). Chem. Phys. Lett. 194, 208–212 (1992).

    Article  CAS  Google Scholar 

  23. Street, S. C. & Gellman, A. J. Quantitative adsorbate orientation from vibrational spectra: ethoxides on Cu(111). J. Chem. Phys. 105, 7158–7170 (1996).

    Article  Google Scholar 

  24. Sung, D. & Gellman, A. J. Ethyl iodide decomposition on Cu(111) and Cu(221). Surf. Sci. 551, 59–68 (2004).

    Article  CAS  Google Scholar 

  25. Lin, J. L. & Bent, B. E. Carbon halogen bond-dissociation on copper surfaces: effect of alkyl chain length. J. Phys. Chem. 96, 8529–8538 (1992).

    Article  CAS  Google Scholar 

  26. Lin, J. L. & Bent, B. E. lodomethane dissociation on Cu(111): bonding and chemistry of adsorbed methyl groups. J. Vac. Sci. Technol. A 10, 2202–2209 (1992).

    Article  CAS  Google Scholar 

  27. Forbes, J. G. & Gellman, A. J. The β-hydride elimination mechanism in adsorbed alkyl groups. J. Am. Chem. Soc. 115, 6277–6283 (2002).

    Article  Google Scholar 

  28. Kao, L. C., Hutson, A. C. & Sen, A. Low-temperature, palladium(II)-catalyzed, solution-phase oxidation of methane to methanol derivative. J. Am. Chem. Soc. 113, 700–701 (1991).

    Article  CAS  Google Scholar 

  29. Periana, R. A., Mironov, O., Taube, D., Bhalla, G. & Jones, C. J. Catalytic, oxidative condensation of CH4 to CH3COOH in one step via CH activation. Science 301, 814–818 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Chua, F. M., Kuk, Y. & Silverman, P. J. Oxygen chemisorption on Cu(110): an atomic view by scanning tunneling microscopy. Phys. Rev. Lett. 63, 386–389 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Dubois, L. H. Oxygen chemisorption and cuprous oxide formation on Cu(111): a high resolution EELS study. Surf. Sci. 119, 399–410 (1982).

    Article  CAS  Google Scholar 

  33. Chiter, F., Costa, D., Maurice, V. & Marcus, P. DFT-based Cu(111)||Cu2O(111) model for copper metal covered by ultrathin copper oxide: structure, electronic properties, and reactivity. J. Phys. Chem. C 124, 17048–17057 (2020).

    Article  CAS  Google Scholar 

  34. Narsimhan, K. et al. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction. J. Am. Chem. Soc. 137, 1825–1832 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Biesinger, M. C. et al. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides. J. Phys.: Conf. Ser. 100, 012025 (2008).

  36. Biesinger, M. C., Lau, L. W. M., Gerson, A. R. & Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010).

    Article  CAS  Google Scholar 

  37. Zhang, H. et al. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. 10, 3340 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. He, M. et al. Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis. Nat. Commun. 11, 3844 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, C., Xiong, H., He, M., Xu, B. & Lu, Q. Oxyhydroxide species enhances CO2 electroreduction to CO on Ag via coelectrolysis with O2. ACS Catal. 11, 12029–12037 (2021).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  41. Hobbs, D., Kresse, G. & Hafner, J. Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B 62, 11556–11570 (2000).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  46. Sundararaman, R. & Goddard, W. A. III The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. J. Chem. Phys. 142, 064107 (2015).

    Article  PubMed  Google Scholar 

  47. Goodpaster, J. D., Bell, A. T. & Head-Gordon, M. Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7, 1471–1477 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Sundararaman, R., Goddard, W. A. III & Arias, T. A. Grand canonical electronic density-functional theory: algorithms and applications to electrochemistry. J. Chem. Phys. 146, 114104 (2017).

    Article  PubMed  Google Scholar 

  49. Zhang, H., Goddard, W. A. III, Lu, Q. & Cheng, M. J. The importance of grand-canonical quantum mechanical methods to describe the effect of electrode potential on the stability of intermediates involved in both electrochemical CO2 reduction and hydrogen evolution. Phys. Chem. Chem. Phys. 20, 2549–2557 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, D., Zhang, J., Cheng, M. J., Lu, Q. & Zhang, H. Machine learning investigation of supplementary adsorbate influence on copper for enhanced electrochemical CO2 reduction performance. J. Phys. Chem. C 125, 15363–15372 (2021).

    Article  CAS  Google Scholar 

  51. Chang, K., Zhang, H., Chen, J. G., Lu, Q. & Cheng, M. J. Constant electrode potential quantum mechanical study of CO2 electrochemical reduction catalyzed by N-doped graphene. ACS Catal. 9, 8197–8207 (2019).

    Article  CAS  Google Scholar 

  52. Jónsson, H., Mills, G. & Jacobsen, K. W. in Classical and Quantum Dynamics in Condensed Phase Simulations (eds Berne, B. J. et al.) 385–404 (World Scientific, 1998).

  53. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  54. Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    Article  CAS  Google Scholar 

  55. van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. III ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

    Article  Google Scholar 

  56. Sengul, M. Y., Randall, C. A. & van Duin, A. C. T. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures. J. Chem. Phys. 148, 164506 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

H.Z., C.L., W.L. and Q.L. acknowledge the financial support from the State Key Laboratory of Chemical Engineering (no. SKL-ChE-23T02) and the Tsinghua University Initiative Scientific Research Program (20211080099). B.X. acknowledges the financial support from Beijing National Laboratory for Molecular Sciences. M.-J.C. acknowledges financial support from the Ministry of Science and Technology of the Republic of China under grant no. MOST 109-2113-M-006-009. W.A.G. acknowledges National Science Foundation (CBET-2005250). All NMR experiments were carried out at the BioNMR Facility, Tsinghua University Branch of China National Center for Protein Sciences (Beijing). We thank N. Xu for the assistance in the NMR data collection. We thank K. Zhao for the insightful discussion on the reaction mechanism. We thank J. Zhang for editing the paper.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., B.X. and Q.L. designed the project and wrote the paper. H.Z., W.L. and C.L. performed alkane activation experiments and physical characterizations. C.L. and H.Z. conducted the in situ SERS experiments. H.Z. and M.-J.C. performed DFT calculations and MD simulations. W.A.G. and G.L. contributed to data analysis and discussion. Q.L. supervised the entire project.

Corresponding authors

Correspondence to Bingjun Xu or Qi Lu.

Ethics declarations

Competing interests

A patent application (2022100080937) on the alkane activation system based on these results has been filed by Tsinghua University and Peking University with Q.L., H.C., C.L., G.L. and B.X. as inventors.

Peer review

Peer review information

Nature Catalysis thanks Wenzhen Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30 and Supplementary Tables 1–11.

Supplementary Data 1

Atomic coordinates of optimized computational models.

Supplementary Data 2

Atomic coordinates of the initial and final states of MD simulations.

Source data

Source Data Fig. 1

Source data used to plot Fig. 1.

Source Data Fig. 2

Source data used to plot Fig. 2.

Source Data Fig. 3

Source data used to plot Fig. 3.

Source Data Fig. 4

Source data used to plot Fig. 4.

Source Data Fig. 5

Source data used to plot Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, C., Liu, W. et al. Activation of light alkanes at room temperature and ambient pressure. Nat Catal 6, 666–675 (2023). https://doi.org/10.1038/s41929-023-00990-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00990-9

  • Springer Nature Limited

This article is cited by

Navigation