Skip to main content
Log in

Photoinduced gold-catalyzed divergent dechloroalkylation of gem-dichloroalkanes

  • Article
  • Published:

From Nature Catalysis

View current issue Submit your manuscript

Abstract

The use of alkyl chlorides as C(sp3)-hybridized electrophiles for the construction of C(sp3)–C(sp3) bonds represents one of the most challenging issues in organic synthesis, associated with their low reduction potential and strong bond dissociation energy. Here we report a divergent radical transformation of a rich library of structurally diverse gem-dichloroalkanes by the controllable dechloroalkylation of alkenes by excited-state dinuclear gold catalysis. The gem-dichloroalkanes can be used to assemble C(sp3)–C(sp3) bonds as a chloroalkyl radical, an alkyl radical cation and a carbene equivalent precursor for carbon-chain propagation, or formal [4+1] and [2+1] cyclization of alkenes. The use of commercially available deuterium-labelled polychloromethanes provides a practical method to incorporate CD2Cl, CDCl2, CDCl and CD2 moieties into organic scaffolds. Studies of the mechanism have revealed an inner-sphere single electron transfer pathway for the homolytic cleavage of a strong C–Cl bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: The challenges of photoredox activation of unactivated C–Cl bonds.
Fig. 2: Scope of hydrochloroalkylation of alkenes.
Fig. 3: Substrate scope of tandem chloroalkylarylation of alkenes.
Fig. 4: Substrate scope of the formal [4+1] cyclization reaction.
Fig. 5: Scope of the cyclopropanation reaction.
Fig. 6: Synthetic applications.
Fig. 7: Mechanism studies.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2157587 (1a) and CCDC 2157457 (1b). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Data related to materials and methods, optimization of conditions, experimental procedures, mechanistic experiments, density functional theory calculations and spectra are provided in the Supplementary Information. All data are available from the corresponding authors upon reasonable request.

References

  1. Meijere, A. D. & Diederich, F. Metal-catalyzed Cross-coupling Reactions 2nd edn, 217–315 (Wiley-VCH, 2008).

  2. Geist, E., Kirschning, A. & Schmidt, T. sp3–sp3 Coupling reactions in the synthesis of natural products and biologically active molecules. Nat. Prod. Rep. 31, 441–448 (2014).

    Article  CAS  Google Scholar 

  3. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  Google Scholar 

  4. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  Google Scholar 

  5. Pitre, S. P., Weires, N. A. & Overman, L. E. Forging C(sp3)–C(sp3) bonds with carbon-centered radicals in the synthesis of complex molecules. J. Am. Chem. Soc. 141, 2800–2813 (2019).

    Article  CAS  Google Scholar 

  6. Juliá, F., Constantin, T. & Leonori, D. Applications of halogen-atom transfer (XAT) for the generation of carbon radicals in synthetic photochemistry and photocatalysis. Chem. Rev. 122, 2292–2352 (2022).

    Article  Google Scholar 

  7. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  Google Scholar 

  8. Cybularczyk-Cecotka, M., Szczepanik, J. & Giedyk, M. Photocatalytic strategies for the activation of organic chlorides. Nat. Catal. 3, 872–886 (2020).

    Article  CAS  Google Scholar 

  9. Vasudevan, D. Direct and indirect electrochemical reduction of organic halides in aprotic media. Russ. J. Electrochem. 41, 310–314 (2005).

    Article  CAS  Google Scholar 

  10. Chintawar, C. C., Yadav, A. K., Kumar, A., Sancheti, S. P. & Patil, N. T. Divergent gold catalysis: unlocking molecular diversity through catalyst control. Chem. Rev. 121, 8478–8558 (2021).

    Article  CAS  Google Scholar 

  11. Xia, S. & Xie, J. Energy transfer in gold photocatalysis. Gold Bull. 55, 123–127 (2022).

    Article  CAS  Google Scholar 

  12. Ye, L.-W. et al. Nitrene transfer and carbene transfer in gold catalysis. Chem. Rev. 121, 9039–9112 (2021).

    Article  CAS  Google Scholar 

  13. Zheng, Z. et al. Homogeneous gold-catalyzed oxidation reactions. Chem. Rev. 121, 8979–9038 (2021).

    Article  CAS  Google Scholar 

  14. Huang, B., Hu, M. & Toste, F. D. Homogeneous gold redox chemistry: organometallics, catalysis, and beyond. Trends Chem. 2, 707–720 (2020).

    Article  CAS  Google Scholar 

  15. Witzel, S., Hashmi, A. S. K. & Xie, J. Light in gold catalysis. Chem. Rev. 121, 8868–8925 (2021).

    Article  CAS  Google Scholar 

  16. Hopkinson, M. N., Tlahuext-Aca, A. & Glorius, F. Merging visible light photoredox and gold catalysis. Acc. Chem. Res. 49, 2261–2272 (2016).

    Article  CAS  Google Scholar 

  17. Fu, W.-F., Chan, K.-C., Miskowski, V. M. & Che, C.-M. The intrinsic 3[dσ*pσ] emission of binuclear gold(I) complexes with two bridging diphosphane ligands lies in the near UV; emissions in the visible region are due to exciplexes. Angew. Chem. Int. Ed. Engl. 38, 2783–2785 (1999).

    Article  CAS  Google Scholar 

  18. Wan, S. G. & Lu, W. Reversible photoactivated phosphorescence of gold(I) arylethynyl complexes in aerated DMSO solutions and gels. Angew. Chem. Int. Ed. Engl. 56, 1784–1788 (2017).

    Article  CAS  Google Scholar 

  19. Schmidbaur, H. & Raubenheimer, H. G. Excimer and exciplex formation in gold(I) complexes preconditioned by aurophilic interactions. Angew. Chem. Int. Ed. Engl. 59, 14748–14771 (2020).

    Article  CAS  Google Scholar 

  20. Che, C.-M., Kwong, H.-L., Yam, V. W.-W. & Cho, K.-C. Spectroscopic properties and redox chemistry of the phosphorescent excited state of [Au2(dppm)2]2+ [dppm bis(diphenylphosphino)-methane]. J. Chem. Soc. Chem. Commun. 885−886 (1989).

  21. Zidan, M., Rohe, S., McCallum, T. & Barriault, L. Recent advances in mono and binuclear gold photoredox catalysis. Catal. Sci. Technol. 8, 6019–6028 (2018).

    Article  CAS  Google Scholar 

  22. Revol, G., McCallum, T., Morin, M., Gagosz, F. & Barriault, L. Photoredox transformations with dimeric gold complexes. Angew. Chem. Int. Ed. Engl. 52, 13342–13345 (2013).

    Article  CAS  Google Scholar 

  23. Zidan, M., McCallum, T., Swann, R. & Barriault, L. Formal bromine atom transfer radical addition of nonactivated bromoalkanes using photoredox gold catalysis. Org. Lett. 22, 8401–8406 (2020).

    Article  CAS  Google Scholar 

  24. Xie, J. et al. A highly efficient gold-catalyzed photoredox C(sp3)-H alkynylation of tertiary aliphatic amines with sunlight. Angew. Chem. Int. Ed. Engl. 54, 6046–6050 (2015).

    Article  CAS  Google Scholar 

  25. Zhang, L., Si, X., Rominger, F. & Hashmi, A. S. K. Visible-light-induced radical carbo-cyclization/gem-diborylation through triplet energy transfer between a gold catalyst and aryl iodides. J. Am. Chem. Soc. 142, 10485–10493 (2020).

    Article  CAS  Google Scholar 

  26. Si, X. et al. Visible light-induced α-C(sp3)-H acetalization of saturated heterocycles catalyzed by a dimeric gold complex. Org. Lett. 22, 5844–5849 (2020).

    Article  CAS  Google Scholar 

  27. Nzulu, F. et al. A dinuclear gold(I) complex as a novel photoredox catalyst for light-induced atom transfer radical polymerization. Polym. Chem. 6, 4605–4611 (2015).

    Article  CAS  Google Scholar 

  28. Yu, H., Zhang, X. & Zhang, S. Mechanism of photocatalytic cyclization of bromoalkenes with a dimeric gold complex. Organometallics 37, 1725–1733 (2018).

    Article  CAS  Google Scholar 

  29. Li, D., Che, C.-M., Kwong, H.-L. & Yam, V. W.-W. Photo-induced C-C bond formation from alkyl halides catalysed by luminescent dinuclear gold(I) and copper(I) complexes. J. Chem. Soc. Dalton Trans. 3325−3329 (1992).

  30. Wang, W. et al. Dinuclear gold catalysis. Chem. Soc. Rev. 50, 1874–1912 (2021).

    Article  CAS  Google Scholar 

  31. Liu, K., Li, N., Ning, Y., Zhu, C. & Xie, J. Gold-catalyzed oxidative biaryl cross-coupling of organometallics. Chem 5, 2718–2730 (2019).

    Article  CAS  Google Scholar 

  32. Zhang, S., Wang, C., Ye, X. & Shi, X. Intermolecular alkene difunctionalization via gold catalyzed oxyarylation. Angew. Chem. Int. Ed. Engl. 59, 20470–20474 (2020).

    Article  CAS  Google Scholar 

  33. Chintawar, C. C., Yadav, A. K. & Patil, N. T. Gold-catalyzed 1,2-diarylation of alkenes. Angew. Chem. Int. Ed. Engl. 59, 11808–11813 (2020).

    Article  CAS  Google Scholar 

  34. Zeineddine, A. et al. Rational development of catalytic Au(I)/Au(III) arylation involving mild oxidative addition of aryl halides. Nat. Commun. 8, 565 (2017).

    Article  Google Scholar 

  35. Ma, C., Chan, C. T. L., To, W. P., Kwok, W. M. & Che, C.-M. Deciphering photoluminescence dynamics and reactivity of the luminescent metal–metal-bonded excited state of a binuclear gold(I) phosphine complex containing open coordination sites. Chem. Eur. J. 21, 13888–13893 (2015).

    Article  CAS  Google Scholar 

  36. Jandik, P., Schubert, U. & Schmidbaur, H. Methylene bridging of two gold atoms through double oxidative addition of methylene dihalides to a cyclic ylide complex. Angew. Chem. Int. Ed. Engl. 21, 73–73 (1982).

    Article  Google Scholar 

  37. Xia, Z. et al. Photosensitized oxidative addition to gold(I) enables alkynylative cyclization of o-alkylnylphenols with iodoalkynes. Nat. Chem. 11, 797–805 (2019).

    Article  CAS  Google Scholar 

  38. Csok, Z., Vechorkin, O., Harkins, S. B., Scopelliti, R. & Hu, X. Nickel complexes of a pincer NN2 ligand: multiple carbon–chloride activation of CH2Cl2 and CHCl3 leads to selective carbon–carbon bond formation. J. Am. Chem. Soc. 130, 8156–8157 (2008).

    Article  CAS  Google Scholar 

  39. Xu, W., Zheng, P. & XU, T. Dual nickel- and photoredox-catalyzed reductive cross-coupling of aryl halides with dichloromethane via a radical process. Org. Lett. 22, 8643–8647 (2020).

    Article  CAS  Google Scholar 

  40. Werth, J. & Uyeda, C. Cobalt-catalyzed reductive dimethylcyclopropanation of 1,3-dienes. Angew. Chem. Int. Ed. Engl. 57, 13902–13906 (2018).

    Article  CAS  Google Scholar 

  41. Uyeda, C. & Kalb, A. E. Catalytic reductive carbene transfer reactions. Chem Catal. 2, 667–678 (2022).

    Article  Google Scholar 

  42. Li, Y. et al. Organophotocatalytic selective deuterodehalogenation of aryl or alkyl chlorides. Nat. Commun. 12, 2894 (2021).

    Article  CAS  Google Scholar 

  43. Huang, G., Yu, J.-T. & Pan, C.-D. Recent advances in polychloromethylation reactions. Adv. Synth. Catal. 363, 305–327 (2021).

    Article  Google Scholar 

  44. Liang, Y.-Y., Lv, G.-F., Ouyang, X.-H., Song, R.-J. & Li, J.-H. Recent developments in the polychloroalkylation by use of simple alkyl chlorides. Adv. Synth. Catal. 363, 290–304 (2021).

    Article  Google Scholar 

  45. Zhou, F., Liu, Y.-L. & Zhou, J. Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstituted stereocenter at the C-3 position. Adv. Synth. Catal. 352, 1381–1407 (2010).

    Article  CAS  Google Scholar 

  46. Simmons, H. E. & Smith, R. D. A new synthesis of cyclopropanes from olefins. J. Am. Chem. Soc. 80, 5323–5324 (1958).

    Article  CAS  Google Scholar 

  47. del Hoyo, A. M., Herraiz, A. G. & Suero, M. G. A. Stereoconvergent cyclopropanation reaction of styrenes. Angew. Chem. Int. Ed. Engl. 56, 1610–1613 (2017).

    Article  Google Scholar 

  48. Kumar, N., Reddy, R. R., Eghbarieh, N. & Masarwa, A. α-Borylalkyl radicals: their distinctive reactivity in modern organic synthesis. Chem. Commun. 56, 13–25 (2020).

    Article  CAS  Google Scholar 

  49. Ameen, D. & Snape, T. J. Chiral 1,1-diaryl compounds as important pharmacophores. MedChemComm. 4, 893–907 (2013).

    Article  CAS  Google Scholar 

  50. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. Deuterium- and tritium-labelled compounds: applications in the life sciences. Angew. Chem. Int. Ed. Engl. 57, 1758–1784 (2018).

    Article  CAS  Google Scholar 

  51. Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. J. Chem. Phys. 24, 966–978 (1956).

    Article  CAS  Google Scholar 

  52. Ren, H. et al. How does iridium(III) photocatalyst regulate nickel(II) catalyst in metallaphotoredox-catalyzed C–S cross-coupling? Theoretical and experimental insights. ACS Catal. 9, 3858–3865 (2019).

    Article  CAS  Google Scholar 

  53. Li, R.-H. et al. Photocatalytic C(sp3)–O/N cross-couplings by NaI–PPh3/CuBr cooperative catalysis: computational design and experimental verification. ACS Catal. 11, 6633–6642 (2021).

    Article  CAS  Google Scholar 

  54. Xu, J., Yang, Y., Zhao, X., Liu, C. & Zhang, D. DFT mechanistic study of Ir(III)/Ni(II)-metallaphotoredox-catalyzed difluoromethylation of aryl bromides. Inorg. Chem. 60, 8682–8691 (2021).

    Article  CAS  Google Scholar 

  55. Saveant, J. M. A simple model for the kinetics of dissociative electron transfer in polar solvents. Application to the homogeneous and heterogeneous reduction of alkyl halides. J. Am. Chem. Soc. 109, 6788–6795 (1987).

    Article  CAS  Google Scholar 

  56. Saveant, J. M. Electron transfer, bond breaking, and bond formation. Acc. Chem. Res. 26, 455–461 (1993).

    Article  CAS  Google Scholar 

  57. Saveant, J.-M. Dynamics of cleavage and formation of anion radicals into and from radical and nucleophiles. Structure–reactivity relationships in SRN1 reactions. J. Phys. Chem. 98, 3716–3724 (1994).

    Article  CAS  Google Scholar 

  58. Truhlar, D. G., Garrett, B. C. & Klippenstein, S. J. Current status of transition-state theory. J. Phys. Chem. 100, 12771–12800 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (22122103 and 21971108 to J.X., 22101130 to J.H., 21971111 and 21732003 to C.Z.), the National Key Research and Development Program of China (2022YFA1503202 and 2021YFC2101901 to J.X.), Natural Science Foundation of Jiangsu Province (grant no. BK20190006 to J.X.), Fundamental Research Funds for the Central Universities (020514380252 and 020514380272 to J.X.) for financial support. S. Wang, Y. He, Y. Li and N. Li are acknowledged for their reproduction of the experimental procedures for products 4aa, 6a, 7i and 8g. All theoretical calculations were performed at the High-Performance Computing Center (HPCC) of Nanjing University.

Author information

Authors and Affiliations

Authors

Contributions

C.-L.J., J.H. and J.X. conceived the work and designed the experiments. C.-L.J., T.L. and C.-G.Z. performed the experiments and analyzed the experimental data. T.L. and C.-L.J. performed the EPR measurements. J.H. performed the density functional theory calculations and discussed the results with C.-L.J. and C.Z., and J.X. co-wrote the manuscript with input from all the other authors.

Corresponding author

Correspondence to Jin Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Rongxiu Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–7, Figs. 1–285 and Discussion.

Supplementary Data 1

Crystallographic data for compound 1a.

Supplementary Data 2

Crystallographic data for compound 1b.

Supplementary Data

Atomic coordinates of the optimized structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, CL., Han, J., Li, T. et al. Photoinduced gold-catalyzed divergent dechloroalkylation of gem-dichloroalkanes. Nat Catal 5, 1098–1109 (2022). https://doi.org/10.1038/s41929-022-00881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00881-5

  • Springer Nature Limited

This article is cited by

Navigation