Skip to main content
Log in

A family of native amine dehydrogenases for the asymmetric reductive amination of ketones

  • Article
  • Published:

From Nature Catalysis

View current issue Submit your manuscript

Abstract

The asymmetric reductive amination of ketones enables the one-step synthesis of chiral amines from readily available starting materials. Here we report the discovery of a family of native NAD(P)H-dependent amine dehydrogenases (nat-AmDHs) competent for the asymmetric reductive amination of aliphatic and alicyclic ketones, adding significantly to the biocatalytic toolbox available for chiral amine synthesis. Studies of ketone and amine substrate specificity and kinetics reveal a strong preference for aliphatic ketones and aldehydes, with activities of up to 614.5 mU mg−1 for cyclohexanone with ammonia, and 851.3 mU mg−1 for isobutyraldehyde with methylamine as the amine donor. Crystal structures of three nat-AmDHs (AmDH4, MsmeAmDH and CfusAmDH) reveal the active site determinants of substrate and cofactor specificity and enable the rational engineering of AmDH4 for the generated activity towards pentan-2-one. Analysis of the three-dimensional catalytic site distribution among bacterial biodiversity revealed a superfamily of divergent proteins with representative specificities ranging from amino acid substrates to hydrophobic ketones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Amine dehydrogenases identified in this study.
Fig. 2: SSN of the native AmDH family.
Fig. 3: Structural and mutagenesis data of AmDH4.
Fig. 4: Structure of the active site of CfusAmDH and MsmeAmDH.
Fig. 5: Dividing the AmDH family into groups with similar active sites.

Similar content being viewed by others

Data availability

Crystallographic data that support the findings of this study have been deposited in the Protein Data Bank (PDB) under accession codes 6G1H, 6G1M, 6IAU and 6IAQ. All the other data supporting the findings of this study are available within the paper and its Supplementary Information and Supplementary Data or from the corresponding authors upon reasonable request.

References

  1. Bornscheuer, U. T. Biocatalysis: successfully crossing boundaries. Angew. Chem. Int. Ed. 55, 4372–4373 (2016).

    Article  CAS  Google Scholar 

  2. Ghislieri, D. & Turner, N. J. Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Top. Catal. 57, 284–300 (2014).

    Article  CAS  Google Scholar 

  3. Sharma, M., Mangas-Sanchez, J. & Grogan, G. NAD(P)H-dependent dehydrogenases for the asymmetric reductive amination of ketones: structure, mechanism, evolution and application. Adv. Synth. Catal. 359, 2011–2025 (2017).

    Article  CAS  Google Scholar 

  4. Grogan, G. Synthesis of chiral amines using redox biocatalysis. Curr. Opin. Chem. Biol. 43, 15–22 (2017).

    Article  Google Scholar 

  5. Vidal, L. S., Kelly, C. L., Mordaka, P. M. & Heap, J. T. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochim. Biophys. Acta Protiens Proteomics 1866, 327–347 (2017).

    Article  Google Scholar 

  6. Höhne, M. & Bornscheuer, U. T. Biocatalytic routes to optically active amines. ChemCatChem 1, 42–51 (2009).

    Article  Google Scholar 

  7. Patil, M. D., Grogan, G., Bommarius, A. S. & Yun, H. Oxidoreductase-catalyzed synthesis of chiral amines. ACS Catal. 8, 10985–11015 (2018).

    Article  CAS  Google Scholar 

  8. Abrahamson, M. J. et al. Development of an amine dehydrogenase for synthesis of chiral amines. Angew. Chem. Int. Ed. 51, 3969–3972 (2012).

    Article  CAS  Google Scholar 

  9. Abrahamson, M. J., Wong, J. W. & Bommarius, A. S. The evolution of an amine dehydrogenase biocatalyst for the asymmetric production of chiral amines. Adv. Synth. Catal. 355, 1780–1786 (2013).

    Article  CAS  Google Scholar 

  10. Bommarius, A. S., Abrahamson, M. J. & Bommarius, B. Engineered amine dehydrogenases and methods of use thereof. US patent 8,835,136, B2 (2014).

  11. Au, S. K., Bommarius, B. R. & Bommarius, A. S. Biphasic reaction system allows for conversion of hydrophobic substrates by amine dehydrogenases. ACS Catal. 4, 4021–4026 (2014).

    Article  CAS  Google Scholar 

  12. Pushpanath, A. et al. Understanding and overcoming the limitations of Bacillus badius and Caldalkalibacillus thermarum amine dehydrogenases for biocatalytic reductive amination. ACS Catal. 7, 3204–3209 (2017).

    Article  CAS  Google Scholar 

  13. Ye, L. J. et al. Engineering of amine dehydrogenase for asymmetric reductive amination of ketone by evolving Rhodococcus phenylalanine dehydrogenase. ACS Catal. 5, 1119–1122 (2015).

    Article  CAS  Google Scholar 

  14. Lowe, J., Ingram, A. A. & Groger, H. Enantioselective synthesis of amines via reductive amination with a dehydrogenase mutant from Exigobacterium sibiricum: substrate scope, co-solvent tolerance and biocatalyst immobilization. Bioorg. Med. Chem. 26, 1387–1392 (2017).

    Article  Google Scholar 

  15. Chen, F. et al. Reshaping the active pocket of amine dehydrogenases for asymmetric synthesis of bulky aliphatic amines. ACS Catal. 8, 2622–2628 (2018).

    Article  CAS  Google Scholar 

  16. Wetzl, D. et al. Asymmetric reductive amination of ketones catalyzed by imine reductases. ChemCatChem 8, 2023–2026 (2016).

    Article  CAS  Google Scholar 

  17. Agard, N. J. et al. Engineered imine reductases and methods for the reductive amination of ketone and amine compounds. US patent 2015132807 A1 (2015).

  18. Itoh, N., Yachi, C. & Kudome, T. Determining a novel NAD+-dependent amine dehydrogenase with a broad substrate range from Streptomyces virginiae IFO 12827: purification and characterization. J. Mol. Catal. B 10, 281–290 (2000).

    Article  CAS  Google Scholar 

  19. Wang, S. & Fang, B. Method for preparing chiral amine through asymmetric reduction under catalysis of marine strain OTI. Chinese patent 103224963B (2013).

  20. Aleku, G. A. et al. A reductive aminase from Aspergillus oryzae. Nat. Chem. 9, 961–969 (2017).

    Article  CAS  Google Scholar 

  21. France, S. P. et al. Identification of novel bacterial members of the imine reductase enzyme family that perform reductive amination. ChemCatChem 10, 1–6 (2018).

    Article  Google Scholar 

  22. Fonknechten, N. et al. A conserved gene cluster rules anaerobic oxidative degradation of l-ornithine. J. Bacteriol. 191, 3162–3167 (2009).

    Article  CAS  Google Scholar 

  23. Mayol, O. et al. Asymmetric reductive amination by a wild-type amine dehydrogenase from the thermophilic bacteria Petrotoga mobilis. Catal. Sci. Technol. 6, 7421–7428 (2016).

    Article  CAS  Google Scholar 

  24. Zaparucha, A., de Berardinis, V. & Vaxelaire-Vergne, C. in Modern Biocatalysis: Advances Towards Synthetic Biological Systems Ch. 1 (RSC, Cambridge, 2018).

  25. Knaus, T., Bohmer, W. & Mutti, F. G. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds. Green Chem. 19, 453–463 (2017).

    Article  CAS  Google Scholar 

  26. Godoy-Alcántar, C., Yatsimirsky, A. K. & Lehn, J. M. Structure–stability correlations for imine formation in aqueous solution. J. Phys. Org. Chem. 18, 979–985 (2005).

    Article  Google Scholar 

  27. Scheller, P. N. et al. Imine reductase-catalyzed intermolecular reductive amination of aldehydes and ketones. ChemCatChem 7, 3239–3242 (2015).

    Article  CAS  Google Scholar 

  28. Reddy, S. G., Sacchettini, J. C. & Blanchard, J. S. Expression, purification, and characterization of Escherichia coli dihydrodipicolinate reductase. Biochemistry 34, 3492–3501 (1995).

    Article  CAS  Google Scholar 

  29. Cirilli, M. et al. The three-dimensional structure of the ternary complex of Corynebacterium glutamicum diaminopimelate dehydrogenase-NADPH-l-2-amino-6-methylene-pimelate. Protein Sci. 9, 2034–2037 (2000).

    Article  CAS  Google Scholar 

  30. Liu, W. et al. Structural and mutational studies on the unusual substrate specificity of meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum. Chembiochem 15, 217–222 (2014).

    Article  CAS  Google Scholar 

  31. Vanhooke, J. L. et al. Phenylalanine dehydrogenase from Rhodococcus sp. M4: high-resolution X-ray analyses of inhibitory ternary complexes reveal key features in the oxidative deamination mechanism. Biochemistry 38, 2326–2339 (1999).

    Article  CAS  Google Scholar 

  32. Sharma, M. et al. A mechanism for reductive amination catalyzed by fungal reductive aminases (RedAms). ACS Catal. 8, 11534–11541 (2018).

    Article  CAS  Google Scholar 

  33. Lichman, B. R. et al. Structural evidence for the dopamine-first mechanism of norcoclaurine synthase. Biochemistry 56, 5274–5277 (2017).

    Article  CAS  Google Scholar 

  34. Bastard, K. et al. Revealing the hidden functional diversity of an enzyme family. Nat. Chem. Biol. 10, 42–49 (2014).

    Article  CAS  Google Scholar 

  35. Sigrist, C. J. et al. New and continuing developments at PROSITE. Nucleic Acids Res. 41, D344–D347 (2013).

    Article  CAS  Google Scholar 

  36. Cosgrove, S. C. et al. Imine reductases, reductive aminases, and amine oxidases for the synthesis of chiral amines: discovery, characterization, and synthetic applications. Methods Enzymol. 608, 131–149 (2018).

    Article  Google Scholar 

  37. Furnham, N. et al. Large-scale analysis exploring evolution of catalytic machineries and mechanisms in enzyme superfamilies. J. Mol. Biol. 428, 253–267 (2016).

    Article  CAS  Google Scholar 

  38. Kabsch, W. XDS. Acta Cryst. D Biol. Cryst. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  39. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2009).

    Article  Google Scholar 

  40. Vagin, A. & Teplyakov, A. Molrep: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  41. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sec. D: Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  42. Murshudov, G. N., Vagin, A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D53, 240–255 (1997).

    CAS  Google Scholar 

  43. Nestl, B. M. et al. Structural and functional insights into asymmetric enzymatic dehydration of alkenols. Nat. Chem. Biol. 13, 275–281 (2017).

    Article  CAS  Google Scholar 

  44. de Melo-Minardi, R. C., Bastard, K. & Artiguenave, F. Identification of subfamily-specific sites based on active sites modeling and clustering. Bioinformatics 26, 3075–3082 (2010).

    Article  Google Scholar 

  45. Le Guilloux, V., Schmidtke, P. & Tuffery, P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10, 168 (2009).

    Article  Google Scholar 

  46. Tomita, H., Katsuyama, Y., Minami, H. & Ohnishi, Y. Identification and characterization of a bacterial cytochrome P450 monooxygenase catalyzing the 3-nitration of tyrosine in rufomycin biosynthesis. J. Biol. Chem. 292, 15859–15869 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Salanoubat for supporting the project, N. Fonknechten for fruitful discussions and assistance with genomic context analysis, C. Pelle and P. Sirvain for large-scale purification and analytical gel filtration of the described enzymes, O. Maciejak (University Val d’Essonne) for NMR assistance, the Region Ile de France for financial support of the 600 MHz spectrometer, S. Hart and J Agirre for assistance with X-ray data collection and data analysis respectively, and the Diamond Light Source for access to beamlines I04 and I04-1 under proposal no. mx-9948. This work was supported by Commissariat à l’énergie atomique et aux énergies alternatives (CEA), the CNRS and the University of Evry Val d’Essonne. The authors thank GlaxoSmithKline for the award of a part studentship to A.F., the Brazilian Government for a fellowship to L.B. under the Coordination for the Improvement of Higher Education Personnel (CAPES) scheme and the COST Action CM1303 ‘System Biocatalysis’ for STSM of O.M in G.G.’s laboratory.

Author information

Authors and Affiliations

Authors

Contributions

C.V.V. conceived the project and directed it with G.G. C.V.V., G.G., O.M., A.Z. and V.d.B. supervised the project. V.d.B. and J.-L.P. performed the candidate enzyme selection. A.D., V.P. carried out the gene cloning, the protein expression and purification on a small scale and the enzymatic screening with input from A.M. and J.-L.P.. O.M., V.P. and C.V.V. conducted the specific activity measurements. G.G., J.P.T., A.F. and L.B. conducted all the structural resolution. K.B. conceived and conducted the structural bioinformatics analysis with input from O.M., C.V.V. and G.G. O.M. carried out the biochemical experiments under the supervision of A.P. O.M. and C.V.V. performed the analytical and semi-preparative scale reactions. C.V.V., G.G., K.B. and O.M. wrote the manuscript with input from A.P., A.Z. and V.d.B.

Corresponding authors

Correspondence to Gideon Grogan or Carine Vergne-Vaxelaire.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–32, Supplementary Tables 1–9, Supplementary Methods, Supplementary Note 1, Supplementary Discussion, Supplementary References

Reporting Summary

Supplementary Data 1

model of AmDH4 (closed form) in complex with NAD+, and product 2,4-DAP

Supplementary Data 2

model of AmDH4 (closed form) in complex with NAD+, ammonia and substrate (2R)−2A4OP

Supplementary Data 3

model of AmDH4 variant N135V/N163V/R161M/H264L in complex with NAD+, ammonia and pentan-2-one

Supplementary Data 4

model of CfusAmDH in complex with NADP+, ammonia and cyclohexanone

Supplementary Data 5

model of MsmeAmDH in complex with NADP+, ammonia and cyclohexanone

Supplementary Data 6

list of the 5313 proteins (Uniprot ID) used in the Sequence Similarity Network

Supplementary Data 7

multiple alignment on the whole sequences of proteins from G3 and G4 groups

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayol, O., Bastard, K., Beloti, L. et al. A family of native amine dehydrogenases for the asymmetric reductive amination of ketones. Nat Catal 2, 324–333 (2019). https://doi.org/10.1038/s41929-019-0249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0249-z

  • Springer Nature Limited

This article is cited by

Navigation