Skip to main content
Log in

Elastic integrated electronics based on a stretchable n-type elastomer–semiconductor–elastomer stack

  • Article
  • Published:

From Nature Electronics

View current issue Submit your manuscript

Abstract

Elastic integrated electronics are of potential use in a range of emerging applications, particularly those that require devices that can form an interface with soft biological tissue. The development of such devices has typically focused on the creation of stretchy p-type semiconductors, and the lack of suitable stretchy n-type semiconductors limits the potential of stretchable integrated systems. Here we show that a brittle n-type organic semiconductor can be made mechanically stretchable by integrating into a stack with an elastomer–semiconductor–elastomer architecture. The structure suppresses the formation and propagation of microcracks and can be stretched by up to 50% with negligible loss of performance. It also improves the long-term stability of the semiconductor in an ambient environment. We use the n-type elastomer–semiconductor–elastomer stack, together with other stretchy electronic materials, to build elastic transistors, digital logic gates, complementary electronics, p–n photodetectors and an active matrix multiplexed deformable imager.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Stretchable n-type ESE stack.
Fig. 2: Stretchable n-type organic transistor array.
Fig. 3: Stretchable logic gates based on n-type organic transistor.
Fig. 4: Stretchable complementary inverter and bilayer photodetector.
Fig. 5: Curvature-adjustable imager.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Jeong, J.-W. et al. Materials and optimized designs for human–machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013).

    Article  Google Scholar 

  2. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article  Google Scholar 

  3. Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article  Google Scholar 

  4. Gutruf, P. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 10, 5742 (2019).

    Article  Google Scholar 

  5. Shim, H. et al. Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors. Proc. Natl Acad. Sci. USA 119, e2204852119 (2022).

    Article  Google Scholar 

  6. Xiong, Y. et al. A furan–thiophene-based quinoidal compound: a new class of solution-processable high-performance n-type organic semiconductor. Adv. Mater. 28, 5949–5953 (2016).

    Article  Google Scholar 

  7. Lan, S. et al. Improving device performance of n-type organic field-effect transistors via doping with a p-type organic semiconductor. J. Mater. Chem. C 7, 4543–4550 (2019).

    Article  Google Scholar 

  8. Yang, C. et al. Additive-assisted ‘metal-wire-gap’ process for n-type two-dimensional organic crystalline films. Org. Electron. 68, 176–181 (2019).

    Article  Google Scholar 

  9. Crone, B. et al. Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521–523 (2000).

    Article  Google Scholar 

  10. Quinn, J. T. E., Zhu, J., Li, X., Wang, J. & Li, Y. Recent progress in the development of n-type organic semiconductors for organic field effect transistors. J. Mater. Chem. C 5, 8654–8681 (2017).

    Article  Google Scholar 

  11. Cortizo-Lacalle, D. et al. Bisthiadiazole-fused tetraazapentacenequinone: an air-stable solution-processable n-type organic semiconductor. Org. Lett. 17, 5902–5905 (2015).

    Article  Google Scholar 

  12. Yeliu, K. et al. High performance n-type vertical organic phototransistors. Org. Electron. 67, 200–207 (2019).

    Article  Google Scholar 

  13. Choi, J., Song, H., Kim, N. & Kim, F. S. Development of n-type polymer semiconductors for organic field-effect transistors. Semicond. Sci. Technol. 30, 064002 (2015).

    Article  Google Scholar 

  14. Taima, T., Toyoshima, S., Hara, K., Saito, K. & Yase, K. Control of measurement environments for high-efficiency organic photovoltaic cells. Jpn. J. Appl. Phys. 45, L217–L219 (2006).

    Article  Google Scholar 

  15. Weitz, R. T. et al. Organic n-channel transistors based on core-cyanated perylene carboxylic diimide derivatives. J. Am. Chem. Soc. 130, 4637–4645 (2008).

    Article  Google Scholar 

  16. Sawyer, E. J. et al. Large increase in stretchability of organic electronic materials by encapsulation. Extrem. Mech. Lett. 8, 78–87 (2016).

    Article  Google Scholar 

  17. Gupta, D. & Hong, Y. Understanding the effect of semiconductor thickness on device characteristics in organic thin film transistors by way of two-dimensional simulations. Org. Electron. 11, 127–136 (2010).

    Article  Google Scholar 

  18. Yang, D. S., Chung, K. & Kim, J. Controlled alignment of polymer chains near the semiconductor–dielectric interface. Org. Electron. 76, 105484 (2020).

    Article  Google Scholar 

  19. Ribierre, J. C. et al. Thickness dependence of the ambipolar charge transport properties in organic field-effect transistors based on a quinoidal oligothiophene derivative. J. Phys. Chem. C 115, 20703–20709 (2011).

    Article  Google Scholar 

  20. Nahid, M. M. et al. Nature and extent of solution aggregation determines the performance of P(NDI2OD-T2) thin-film transistors. Adv. Electron. Mater. 4, 1700559 (2018).

    Article  Google Scholar 

  21. Wang, G. et al. Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport. Proc. Natl Acad. Sci. USA 114, E10066–E10073 (2017).

    Article  Google Scholar 

  22. Wang, S. et al. Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers. Proc. Natl Acad. Sci. USA 112, 10599–10604 (2015).

    Article  Google Scholar 

  23. Casula, G. et al. Printed, low-voltage, all-organic transistors and complementary circuits on paper substrate. Adv. Electron. Mater. 6, 1901027 (2020).

    Article  Google Scholar 

  24. Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007).

    Article  Google Scholar 

  25. Baeg, K.-J. et al. Improved performance uniformity of inkjet printed n-channel organic field-effect transistors and complementary inverters. Org. Electron. 12, 634–640 (2011).

    Article  Google Scholar 

  26. Hu, Y., Warwick, C., Sou, A., Jiang, L. & Sirringhaus, H. Fabrication of ultra-flexible, ultra-thin organic field-effect transistors and circuits by a peeling-off method. J. Mater. Chem. C 2, 1260–1263 (2014).

    Article  Google Scholar 

  27. Baeg, K.-J., Binda, M., Natali, D., Caironi, M. & Noh, Y.-Y. Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–4295 (2013).

    Article  Google Scholar 

  28. Osedach, T. P. et al. Interfacial recombination for fast operation of a planar organic/QD infrared dhotodetector. Adv. Mater. 22, 5250–5254 (2010).

    Article  Google Scholar 

  29. Zu, B., Lu, B., Guo, Y., Xu, T. & Dou, X. Simple metal/SiO2/Si planar photodetector utilizing leakage current flows through a SiO2 layer. J. Mater. Chem. C 2, 2045–2050 (2014).

    Article  Google Scholar 

  30. Wei, Y. et al. Hybrid organic/PbS quantum dot bilayer photodetector with low dark current and high detectivity. Adv. Funct. Mater. 28, 1706690 (2018).

    Article  Google Scholar 

  31. Li, C. et al. Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. Nanoscale 12, 2201–2227 (2020).

    Article  Google Scholar 

  32. Yang, D. & Ma, D. Development of organic semiconductor photodetectors: from mechanism to applications. Adv. Opt. Mater. 7, 1800522 (2019).

    Article  Google Scholar 

  33. Zhu, L., Tu, Z., Yi, Y. & Wei, Z. Achieving small exciton binding energies in small molecule acceptors for organic solar cells: effect of molecular packing. J. Phys. Chem. Lett. 10, 4888–4894 (2019).

    Article  Google Scholar 

  34. Kippelen, B. & Brédas, J.-L. Organic photovoltaics. Energy Environ. Sci. 2, 251–261 (2009).

    Article  Google Scholar 

  35. Kim, H.-J., Sim, K., Thukral, A. & Yu, C. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci. Adv. 3, e1701114 (2017).

    Article  Google Scholar 

  36. Sim, K. et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 5, eaav5749 (2019).

    Article  Google Scholar 

  37. Shim, H. et al. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 5, eaax4961 (2019).

    Article  Google Scholar 

  38. Li, T., Liu, M., Li, Q., Chen, R. & Liu, X. Hybrid photodetector based on CsPbBr3 perovskite nanocrystals and PC71BM fullerene derivative. Chem. Phys. Lett. 699, 208–211 (2018).

    Article  Google Scholar 

  39. Dinyari, R., Rim, S.-B., Huang, K., Catrysse, P. B. & Peumans, P. Curving monolithic silicon for nonplanar focal plane array applications. Appl. Phys. Lett. 92, 091114 (2008).

    Article  Google Scholar 

  40. Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).

    Article  Google Scholar 

  41. Rim, S.-B., Catrysse, P. B., Dinyari, R., Huang, K. & Peumans, P. The optical advantages of curved focal plane arrays. Opt. Express 16, 4965–4971 (2008).

    Article  Google Scholar 

  42. Jung, I. et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl Acad. Sci. USA 108, 1788–1793 (2011).

    Article  Google Scholar 

  43. Dagdeviren, C. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14, 728–736 (2015).

    Article  Google Scholar 

  44. Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006).

    Article  Google Scholar 

  45. Xu, S. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015).

    Article  Google Scholar 

  46. Zhang, Y. et al. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl Acad. Sci. USA 112, 11757–11764 (2015).

    Article  Google Scholar 

  47. Shim, H. et al. Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res. 15, 758–764 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

C.Y. is grateful for financial support by the Office of Naval Research grant N00014-18-1-2338 under the Young Investigator Program and the National Science Foundation grants CAREER (1554499), EFRI (1935291) and CPS (1931893). T.J.M. and A.F. acknowledge support from the Air Force Office of Scientific Research grant (FA9550-22-1-0423) and Materials Research Science and Engineering Center (MRSEC) at Northwestern University (NSF DMR-1720139).

Author information

Authors and Affiliations

Authors

Contributions

K.S. and C.Y. conceived and designed the experiment. K.S., H.S., Y.Z., S.P. and S.J. performed the experiments. K.S., H.S. and Y.Z. characterized device performance. K.S., H.S. and Y.Z. analysed the experimental data. B.W., T.J.M. and A.F. provided materials and advised on the experiment. H.S., K.S. and C.Y. wrote the paper.

Corresponding author

Correspondence to Cunjiang Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Jung-Hun Seo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2 and Figs. 1–28.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, H., Sim, K., Wang, B. et al. Elastic integrated electronics based on a stretchable n-type elastomer–semiconductor–elastomer stack. Nat Electron 6, 349–359 (2023). https://doi.org/10.1038/s41928-023-00966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-00966-4

  • Springer Nature Limited

This article is cited by

Navigation