Skip to main content
Log in

Dual use of solar power plants as biocrust nurseries for large-scale arid soil restoration

  • Article
  • Published:

From Nature Sustainability

View current issue Submit your manuscript

Abstract

Large portions of global arid lands are under severe, increasing anthropogenic stress, their soils progressively degrading or already degraded. The interventional regeneration of the natural cover of these soils—photosynthetic communities known as biocrusts that armour them against erosion and fertilize them—is currently regarded as promising for dryland restoration and sustainability. Technologies for biocrust restoration developed during the past decades are, however, invariably of high effort and low capacity, constraining application to small spatial scales. We tested the notion that crustivoltaics, where solar power plants are used as ad hoc biocrusts nurseries, can break this scaling barrier. We show experimentally that solar plants indeed promote the formation of biocrust over neighbouring soils, doubling biocrust biomass and tripling biocrust cover, and that after biocrust harvesting, recovery is swift particularly if re-inoculated. Our results point to a mode of continuous dual operation that is not only effective and socioeconomically attractive but can also increase capacity by orders of magnitude to reach regional scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Placement of survey and experimental inoculation plots at the Poly Mount 2 solar farm with respect to layout of PV rows.
Fig. 2: Microbial community composition of natural, nursery-grown and solar farm grown biocrusts.
Fig. 3: Distribution of biocrust development in survey plots according to their position with respect to solar panels.
Fig. 4: Temporal dynamics and rainfall dependence of biocrust recovery after harvesting inside the PV installation.
Fig. 5: Effect of inoculum type on end-point biocrust development and recovery rates.
Fig. 6: Abstracted flow-through chart for the continuous operation of a PV installation under the crustivoltaic approach.

Similar content being viewed by others

Data availability

Molecular sequence data for strain and microbial community analyses are freely available from NCBI under bioproject number PRJNA899057. Context databases used for phylogenetic placement are available at https://github.com/anagiraldo/Crustivoltaics. All other source data used in graphical displays or statistical analyses are provided as supplementary files. Weather records used for context are available at https://alert.fcd.maricopa.gov/alert/Google/v3/gmap.htmlSource data are provided with this paper.

Code availability

No specific code was used in this research.

References

  1. Reynolds, J. F. et al. Ecology: global desertification: building a science for dryland development. Science 316, 847–851 (2007).

    Article  CAS  Google Scholar 

  2. Nkonya, E., Mirzabaev, A. & von Braun, J. (eds) Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development (Springer Open, 2016).https://doi.org/10.1007/978-3-319-19168-3_3

  3. Busso, C. A. & Fernández, O. A. in Climate Variability Impacts on Land Use and Livelihoods in Drylands (eds Gaur, M. K. & Squires, V. R.) Ch. 13 (Springer, 2017).

  4. Ren, Q. et al. Impacts of urban expansion on natural habitats in global drylands. Nat. Sustain. 5, 869–878 (2022).

    Article  Google Scholar 

  5. IPCC: Technical Summary. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2019).

  6. Nkonya, E., Winslow, M., Reed, M. S., Mortimore, M. & Mirzabaev, A. Monitoring and assessing the influence of social, economic and policy factors on sustainable land management in drylands. Land Degrad. Dev. 22, 240–247 (2011).

    Article  Google Scholar 

  7. Gao, L. et al. Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biol. Biochem. 105, 49–58 (2017).

    Article  CAS  Google Scholar 

  8. Beraldi-Campesi, H., Hartnett, H. E., Anbar, A., Gordon, G. W. & Garcia-Pichel, F. Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land. Geobiology 7, 348–359 (2009).

    Article  CAS  Google Scholar 

  9. Reynolds, R. et al. Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc. Natl Acad. Sci. USA 98, 7123–7127 (2001).

    Article  CAS  Google Scholar 

  10. Phillips, M. L. et al. Biocrust mediate a new mechanism for land degradation under a changing climate. Nat. Clim. Change 12, 71–76 (2022).

    Article  Google Scholar 

  11. Belnap, J. & Gillette, D. A. Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Degrad. Dev. 8, 355–362 (1997).

    Article  Google Scholar 

  12. Cole, D. N. Trampling disturbance and recovery of cryptogamic soil crusts in Grand Canyon National Park. Great Basin Nat. 50, 321–325 (1990).

    Google Scholar 

  13. Weber, B., Bowker, M., Zhang, Y. & Belnap, J. in Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies Vol. 226 (eds Weber, B. et al.) 479–498 (Springer, 2016); https://doi.org/10.1007/978-3-319-30214-0_23

  14. Fick, S. E., Barger, N., Tatarko, J. & Duniway, M. C. Induced biological soil crust controls on wind erodibility and dust (PM10) emissions. Earth Surf. Process. Landf. 45, 224–236 (2020).

    Article  Google Scholar 

  15. Garcia-Pichel, F. & Belnap, J. Microenvironments and microscale productivity of cyanobacterial desert crusts. J. Phycol. 32, 774–782 (1996).

    Article  Google Scholar 

  16. Finn, D. R. et al. Agricultural practices drive biological loads, seasonal patterns and potential pathogens in the aerobiome of a mixed-land-use dryland. Sci. Total Environ. 798, 149239 (2021).

    Article  CAS  Google Scholar 

  17. Brazel, A. & Hsu, S. The climatology of hazardous Arizona dust storms. Spec. Pap. Geol. Soc. Am. 186, 293–303 (1981).

    Google Scholar 

  18. Dimitrova, R. et al. Relationship between particulate matter and childhood asthma – basis of a future warning system for central Phoenix. Atmos. Chem. Phys. 12, 2479–2490 (2012).

    Article  CAS  Google Scholar 

  19. Belnap, J. Recovery rates of cryptobiotic crusts: inoculant use and assessment methods. Great Basin Nat. 53, 89–95 (1993).

    Google Scholar 

  20. St Clair, L. L., Johansen, J. R. & Webb, B. L. Rapid stabilization of fire-disturbed sites using a soil crust slurry: inoculation studies. Reclam. Reveg. Res. 4, 261–269 (1986).

    Google Scholar 

  21. Ayuso, S. V., Giraldo-Silva, A., Nelson, C., Barger, N. N. & Garcia-Pichel, F. Microbial nursery production of high-quality biological soil crust biomass for restoration of degraded dryland soils. Appl. Environ. Microbiol. 83, e02179-16 (2017).

    Google Scholar 

  22. Li, X. et al. Biocrust research in China: recent progress and application in land degradation control. Front. Plant Sci. 12, 751521 (2021).

    Article  Google Scholar 

  23. Lan, S. et al. Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities. Environ. Sci. Technol. 48, 307–315 (2014).

    Article  CAS  Google Scholar 

  24. Giraldo-Silva, A., Nelson, C., Barger, N. N. & Garcia-Pichel, F. Nursing biocrusts: isolation, cultivation, and fitness test of indigenous cyanobacteria. Restor. Ecol. 27, 793–803 (2019).

    Article  Google Scholar 

  25. Bethany, J., Giraldo-Silva, A., Nelson, C., Barger, N. N. & Garcia-Pichel, F. Optimizing the production of nursery-based biological soil crusts for restoration of arid land soils. Appl. Environ. Microbiol. 85, e00735-19 (2019).

    Article  CAS  Google Scholar 

  26. Giraldo-Silva, A., Nelson, C., Penfold, C., Barger, N. N. & Garcia-Pichel, F. Effect of preconditioning to the soil environment on the performance of 20 cyanobacterial strains used as inoculum for biocrust restoration. Restor. Ecol. 28, S187–S193 (2019).

    Google Scholar 

  27. Nelson, C., Giraldo-Silva, A. & Garcia-Pichel, F. A fog-irrigated soil substrate system unifies and optimizes cyanobacterial biocrust inoculum production. Appl. Environ. Microbiol. 86, e00624-20 (2020).

    Article  CAS  Google Scholar 

  28. Touil, S., Richa, A., Fizir, M. & Bingwa, B. Shading effect of photovoltaic panels on horticulture crops production: a mini review. Rev. Environ. Sci. Biotechnol. 20, 281–296 (2021).

    Article  Google Scholar 

  29. Yue, S., Wu, W., Zhou, X., Ren, L. & Wang, J. The influence of photovoltaic panels on soil temperature in the Gonghe desert area. Environ. Eng. Sci. 38, 910–920 (2021).

    Article  CAS  Google Scholar 

  30. Jahanfar, A., Drake, J., Gharabaghi, B. & Sleep, B. An experimental and modeling study of evapotranspiration from integrated green roof photovoltaic systems. Ecol. Eng. 152, 105767 (2020).

    Article  Google Scholar 

  31. Liu, Y. et al. Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem. Land Degrad. Dev. 30, 2177–2186 (2019).

    Article  CAS  Google Scholar 

  32. Mamun, M. A., Dargusch, P., Wadley, D., Zulkarnain, N. A. & Aziz, A. A. A review of research on agrivoltaic systems. Renew. Sustain. Energy Rev. 161, 112351 (2022).

    Article  Google Scholar 

  33. Maghami, M. R. et al. Power loss due to soiling on solar panel: a review. Renew. Sustain. Energy Rev. 59, 1307–1316 (2016).

    Article  Google Scholar 

  34. Garcia-Pichel, F., Belnap, J., Neuer, S. & Schanz, F. Estimates of global cyanobacterial biomass and its distribution. Arch. Hydrobiol. Suppl. Algol. Stud. 109, 213–227 (2003).

    Google Scholar 

  35. Fernandes, V., Giraldo-Silva, A., Roush, D. & Garcia-Pichel, F. Coleofasciculaceae, a monophyletic home for the Microcoleus steenstrupii complex and other desiccation-tolerant filamentous cyanobacteria. J. Phycol. 57, 1563–1579 (2021).

    Article  Google Scholar 

  36. Garcia-Pichel, F., Loza, V., Marusenko, Y., Mateo, P. & Potrafka, R. M. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340, 1574–1576 (2013).

    Article  CAS  Google Scholar 

  37. Pringault, O. & Garcia-Pichel, F. Hydrotaxis of cyanobacteria in desert crusts. Microb. Ecol. 47, 366–373 (2004).

    Article  CAS  Google Scholar 

  38. Fernandes, V., Rudgers, J. A., Collins, S. L. & Garcia-Pichel, F. Rainfall pulse regime drives biomass and community composition in biological soil crusts. Ecology 103, e3744 (2022).

    Article  Google Scholar 

  39. Fernandes, V. M. C. et al. Exposure to predicted precipitation patterns decreases population size and alters community structure of cyanobacteria in biological soil crusts from the Chihuahuan Desert. Environ. Microbiol. 20, 259–269 (2018).

    Article  Google Scholar 

  40. Faist, A. M. et al. Inoculation and habitat amelioration efforts in biological soil crust recovery vary by desert and soil texture. Restor. Ecol. 28, S96–S105 (2020).

    Article  Google Scholar 

  41. Antoninka, A. et al. Addressing barriers to improve biocrust colonization and establishment in dryland restoration. Restor. Ecol. 28, S150–S159 (2019).

    Google Scholar 

  42. Duval, D., Bickel, A. K. & Frisvold, G. Arizona County Agricultural Economy Profiles (Univ. Arizona, 2020).

  43. Bethany, J., Johnson, S. L. & Garcia-Pichel, F. High impact of bacterial predation on cyanobacteria in soil biocrusts. Nat. Commun. 13, 4835 (2022).

    Article  CAS  Google Scholar 

  44. Dou, W., Xiao, B., Wang, Y. & Kidron, G. J. Contributions of three types of biocrusts to soil carbon stock and annual efflux in a small watershed of Northern Chinese Loess Plateau. Appl. Soil Ecol. 179, 104596 (2022).

    Article  Google Scholar 

  45. Bernal, B., Murray, L. T. & Pearson, T. R. H. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manage. 13, 22 (2018).

    Article  CAS  Google Scholar 

  46. Machado-de-Lima, N. M. et al. The compositionally distinct cyanobacterial biocrusts from Brazilian savanna and their environmental drivers of community diversity. Front. Microbiol. 10, 2798 (2019).

    Article  Google Scholar 

  47. Chilton, A. M., Nguyen, S. T. T., Nelson, T. M., Pearson, L. A. & Neilan, B. A. Climate dictates microbial community composition and diversity in Australian biological soil crusts (biocrusts). Environ. Microbiol. 24, 5467–5482 (2022).

    Article  CAS  Google Scholar 

  48. Garcia-Pichel, F., López-Cortés, A. & Nübel, U. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl. Environ. Microbiol. 67, 1902–1910 (2001).

    Article  CAS  Google Scholar 

  49. Abed, R. M. M. et al. Habitat-dependent composition of bacterial and fungal communities in biological soil crusts from Oman. Sci. Rep. 9, 6468 (2019).

    Article  Google Scholar 

  50. Ayuso, S. V., Giraldo-Silva, A., Barger, N. N. & Garcia-Pichel, F. Microbial inoculum production for biocrust restoration: testing the effects of a common substrate versus native soils on yield and community composition. Restor. Ecol. 28, S194–S202 (2020).

    Article  Google Scholar 

  51. Garcia-Pichel, F., Johnson, S. L., Youngkin, D. & Belnap, J. Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb. Ecol. 46, 312–321 (2003).

    Article  CAS  Google Scholar 

  52. Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 10373 (2016).

    Article  CAS  Google Scholar 

  53. Gonzalez-de-Salceda, L. & Garcia-Pichel, F. The allometry of cellular DNA and ribosomal gene content among microbes and its use for the assessment of microbiome community structure. Microbiome 9, 173 (2021).

    Article  CAS  Google Scholar 

  54. Wilson, P. W. & Knight, S. G. Experiments in Bacterial Physiology (Burgess, 1952).

  55. Pikovskaya, R. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17, 362–370 (1948).

    CAS  Google Scholar 

  56. Nelson, C., Giraldo-Silva, A. & Garcia-Pichel, F. A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus. ISME J. 15, 282–292 (2021).

    Article  CAS  Google Scholar 

  57. Muyzer, G., De Waal, E. C. & Uitierlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).

    Article  CAS  Google Scholar 

  58. Gilbert, J. A. et al. The Earth Microbiome Project: meeting report of the ‘1st EMP meeting on sample selection and acquisition’ at Argonne National Laboratory October 6th 2010. Stand. Genomic Sci. 3, 249–253 (2010).

    Article  Google Scholar 

  59. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  Google Scholar 

  60. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

  61. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  Google Scholar 

  62. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  Google Scholar 

  63. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  Google Scholar 

  64. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    Article  CAS  Google Scholar 

  65. Garcia-Pichel, F., Zehr, J. P., Bhattacharya, D. & Pakrasi, H. B. What’s in a name? The case of cyanobacteria. J. Phycol. 56, 1–5 (2020).

    Article  Google Scholar 

  66. Roush, D., Giraldo-Silva, A. & Garcia-Pichel, F. Cydrasil 3, a curated 16S rRNA gene reference package and web app for cyanobacterial phylogenetic placement. Sci. Data 8, 230 (2021).

    Article  CAS  Google Scholar 

  67. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  68. Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn (Sage Publications, 2019).

Download references

Acknowledgements

This work was supported by the US National Science Foundation through the ERC’s Center for Bio-mediated and Bio-inspired Geotechnics (NSF grant no. ENG 1449501 - FGP). During this research J.B. was also supported by a scholarship from ASU’s graduate college. We thank E. Vivoni for access to climate records and the leadership of Clearway Energy for providing continued access to the solar plant and for encouragement of our project.

Author information

Authors and Affiliations

Authors

Contributions

A.M.H.-V., A.G.-S., C.N., J.B. and F.G.-P. were responsible for experimental and methodological design. A.M.H.-V., A.G.-S., C.N., J.B., L.G.d.S. and P.K. were responsible for sampling and sample processing. A.M.H.-V. was responsible for statistical analyses and meteorological data processing. A.G.-S. conducted microbial isolation and bioinformatics. A.G.-S. and C.N. performed inoculum production. F.G.-P. was responsible for conceptualization, funding acquisition, paper writing and preparation of displays. All authors read and edited the paper.

Corresponding author

Correspondence to Ferran Garcia-Pichel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Yaron Ziv and Michala Phillips for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, and Tables 1 and 2.

Reporting Summary

Supplementary Data

Results for all statistics presented in the paper.

Source data

Source Data Fig. 3

Statistical raw data.

Source Data Fig. 4

Statistical raw data.

Source Data Fig. 5

Statistical raw data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heredia-Velásquez, A.M., Giraldo-Silva, A., Nelson, C. et al. Dual use of solar power plants as biocrust nurseries for large-scale arid soil restoration. Nat Sustain 6, 955–964 (2023). https://doi.org/10.1038/s41893-023-01106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01106-8

  • Springer Nature Limited

This article is cited by

Navigation