Skip to main content
Log in

The genomic landscape of canine diffuse large B-cell lymphoma identifies distinct subtypes with clinical and therapeutic implications

  • Article
  • Published:
Lab Animal

Abstract

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid neoplasm in dogs and in humans. It is characterized by a remarkable degree of clinical heterogeneity that is not completely elucidated by molecular data. This poses a major barrier to understanding the disease and its response to therapy, or when treating dogs with DLBCL within clinical trials. We performed an integrated analysis of exome (n = 77) and RNA sequencing (n = 43) data in a cohort of canine DLBCL to define the genetic landscape of this tumor. A wide range of signaling pathways and cellular processes were found in common with human DLBCL, but the frequencies of the most recurrently mutated genes (TRAF3, SETD2, POT1, TP53, MYC, FBXW7, DDX3X and TBL1XR1) differed. We developed a prognostic model integrating exonic variants and clinical and transcriptomic features to predict the outcome in dogs with DLBCL. These results comprehensively define the genetic drivers of canine DLBCL and can be prospectively utilized to identify new therapeutic opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: KM curves for 77 dogs with DLBCL according to treatment.
Fig. 2: Mutational landscape of cDLBCL determined by WES.
Fig. 3: Oncoplot of recurrently mutated genes and CNAs in cDLBCL.
Fig. 4: Somatic CNAs and short mutations in the top-four mutated genes.
Fig. 5: Somatic interactions in cDLBCL.
Fig. 6: Mutational signature analysis in cDLBCL.
Fig. 7: Oncogenic pathways affected by SNVs and CNAs in cDLBCL.
Fig. 8: CNA profile of cDLBCL.
Fig. 9: Association of TP53 mutation with CNAs.
Fig. 10: KM curves for 77 dogs with DLBCL according to TP53, MYC and POT1 mutational status.

Similar content being viewed by others

Data availability

Raw Illumina reads of RNA-Seq and WES are publicly available in SRA Archive with reference numbers SRP137798 and PRJNA752630.

References

  1. Villarnovo, D., McCleary-Wheeler, A. L. & Richards, K. L. Barking up the right tree: advancing our understanding and treatment of lymphoma with a spontaneous canine model. Curr. Opin. Hematol. 24, 359–366 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Avery, A. C. The genetic and molecular basis for canine models of human leukemia and lymphoma. Front. Oncol. 10, 23 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marconato, L. et al. Opportunities and challenges of active immunotherapy in dogs with B-cell lymphoma: a 5-year experience in two veterinary oncology centers. J. Immunother. Cancer 7, 146 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Valli, V. E., Kass, P. H., San Myint, M. & Scott, F. Canine lymphomas: association of classification type, disease stage, tumor subtype, mitotic rate, and treatment with survival. Vet. Pathol. 50, 738–748 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Aresu, L. et al. Minimal residual disease detection by flow cytometry and PARR in lymph node, peripheral blood and bone marrow, following treatment of dogs with diffuse large B-cell lymphoma. Vet. J. 200, 318–324 (2014).

    Article  PubMed  Google Scholar 

  6. Richards, K. L. et al. Gene profiling of canine B-cell lymphoma reveals germinal center and postgerminal center subtypes with different survival times, modeling human DLBCL. Cancer Res. 73, 5029–5039 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aresu, L. et al. New molecular and therapeutic insights into canine diffuse large B-cell lymphoma elucidates the role of the dog as a model for human disease. Haematologica 104, e256–e259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alsaihati, B. A. et al. Canine tumor mutational burden is correlated with TP53 mutation across tumor types and breeds. Nat. Commun. 12, 4670 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elvers, I. et al. Exome sequencing of lymphomas from three dog breeds reveals somatic mutation patterns reflecting genetic background. Genome Res. 25, 1634–1645 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bushell, K. R. et al. Genetic inactivation of TRAF3 in canine and human B-cell lymphoma. Blood 125, 999–1005 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Gardner, H. L. et al. Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2. Commun. Biol. 2, 266 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sakthikumar, S. et al. SETD2 is recurrently mutated in whole-exome sequenced canine osteosarcoma. Cancer Res. 78, 3421–3431 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Smith, P. A. D., Waugh, E. M., Crichton, C., Jarrett, R. F. & Morris, J. S. The prevalence and characterisation of TRAF3 and POT1 mutations in canine B-cell lymphoma. Vet. J. 266, 105575 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Leiserson, M. D., Reyna, M. A. & Raphael, B. J. A weighted exact test for mutually exclusive mutations in cancer. Bioinformatics 32, i736–i745 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu, M. et al. Pan-cancer analysis of SETD2 mutation and its association with the efficacy of immunotherapy. NPJ Precis. Oncol. 5, 51 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, L., Li, M. & Wang, X. Cancer type-dependent correlations between TP53 mutations and antitumor immunity. DNA Repair 88, 102785 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Sanchez-Vega, F. et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 173, 321–337.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miao, Y., Medeiros, L. J., Li, Y., Li, J. & Young, K. H. Genetic alterations and their clinical implications in DLBCL. Nat. Rev. Clin. Oncol. 16, 634–652 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Keats, J. J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Demchenko, Y. N. et al. Classical and/or alternative NF-κB pathway activation in multiple myeloma. Blood 115, 3541–3552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Otto, C. et al. Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br. J. Haematol. 157, 702–708 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Rossi, D. et al. Alteration of BIRC3 and multiple other NF-κB pathway genes in splenic marginal zone lymphoma. Blood 118, 4930–4934 (2011).

    Article  PubMed  Google Scholar 

  24. Rahal, R. et al. Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma. Nat. Med. 20, 87–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, B. et al. An oncogenic role for alternative NF-κB signaling in DLBCL revealed upon deregulated BCL6 expression. Cell Rep. 11, 715–726 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moore, C. R., Edwards, S. K. & Xie, P. Targeting TRAF3 downstream signaling pathways in B cell neoplasms. J. Cancer Sci. Ther. 7, 67–74 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Whillock, A. L., Mambetsariev, N., Lin, W. W., Stunz, L. L. & Bishop, G. A. TRAF3 regulates the oncogenic proteins Pim2 and c-Myc to restrain survival in normal and malignant B cells. Sci. Rep. 9, 12884 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mambetsariev, N., Lin, W. W., Wallis, A. M., Stunz, L. L. & Bishop, G. A. TRAF3 deficiency promotes metabolic reprogramming in B cells. Sci. Rep. 6, 35349 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Diop, F. et al. Biological and clinical implications of BIRC3 mutations in chronic lymphocytic leukemia. Haematologica 105, 448–456 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Licht, J. D. SETD2: a complex role in blood malignancy. Blood 130, 2576–2578 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ji, M. M. et al. Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified. Haematologica 103, 679–687 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McKinney, M. et al. The genetic basis of hepatosplenic T-cell lymphoma. Cancer Discov. 7, 369–379 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laginestra, M. A. et al. Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified. Mod. Pathol. 33, 179–187 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, J. et al. Genetic heterogeneity of diffuse large B-cell lymphoma. Proc. Natl Acad. Sci. USA 110, 1398–1403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, J. et al. SETD2: an epigenetic modifier with tumor suppressor functionality. Oncotarget 7, 50719–50734 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fuller, C. E., Jones, D. T. W. & Kieran, M. W. New classification for central nervous system tumors: implications for diagnosis and therapy. Am. Soc. Clin. Oncol. Educ. Book 37, 753–763 (2017).

    Article  PubMed  Google Scholar 

  37. Ezponda, T. & Licht, J. D. Molecular pathways: deregulation of histone H3 lysine 27 methylation in cancer—different paths, same destination. Clin. Cancer Res. 20, 5001–5008 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Mohammad, F. et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med. 23, 483–492 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43, 830–837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, J. et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat. Med. 21, 1190–1198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ortega-Molina, A. et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat. Med. 21, 1199–1208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chapuy, B. et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 24, 679–690 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trovato, M., Patil, V., Gehre, M. & Noh, K. M. Histone variant H3.3 mutations in defining the chromatin function in mammals. Cells https://doi.org/10.3390/cells9122716 (2020).

  46. McCann, T. S. et al. Biology and targeting of the Jumonji-domain histone demethylase family in childhood neoplasia: a preclinical overview. Expert Opin. Ther. Targets 23, 267–280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wright, G. W. et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell 37, 551–568.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schulz, W. A., Lang, A., Koch, J. & Greife, A. The histone demethylase UTX/KDM6A in cancer: progress and puzzles. Int. J. Cancer 145, 614–620 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Venturutti, L. et al. TBL1XR1 mutations drive extranodal lymphoma by inducing a pro-tumorigenic memory fate. Cell 182, 297–316.e27 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mondello, P. et al. Selective Inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma. Cancer Discov. 10, 440–459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hollebecque, A. et al. Phase I study of lysine-specific demethylase 1 inhibitor, CC-90011, in patients with advanced solid tumors and relapsed/refractory non-Hodgkin lymphoma. Clin. Cancer Res. 27, 438–446 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Hatzi, K. et al. Histone demethylase LSD1 is required for germinal center formation and BCL6-driven lymphomagenesis. Nat. Immunol. 20, 86–96 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Heward, J. et al. KDM5 inhibition offers a novel therapeutic strategy for the treatment of KMT2D mutant lymphomas. Blood 138, 370–381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong, K. et al. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nat. Commun. 10, 353 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ye, X. et al. Genome-wide mutational signatures revealed distinct developmental paths for human B cell lymphomas. J. Exp. Med. https://doi.org/10.1084/jem.20200573 (2021).

  56. Marconato, L., Gelain, M. E. & Comazzi, S. The dog as a possible animal model for human non-Hodgkin lymphoma: a review. Hematol. Oncol. 31, 1–9 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Dias, J. N. R. et al. Immunotherapeutic strategies for canine lymphoma: changing the odds against non-Hodgkin lymphoma. Front. Vet. Sci. 8, 621758 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Marconato, L. et al. Randomized, placebo-controlled, double-blinded chemoimmunotherapy clinical trial in a pet dog model of diffuse large B-cell lymphoma. Clin. Cancer Res. 20, 668–677 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P. K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278, 117–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Xu-Monette, Z. Y. et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood 120, 3986–3996 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ramsay, A. J. et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat. Genet. 45, 526–530 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Chalfon, C. et al. Minimal residual disease in lymph nodes after achievement of complete remission predicts time to relapse in dogs with large B-cell lymphoma. Vet. Comp. Oncol. 17, 139–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Vail, D. M. et al. Response evaluation criteria for peripheral nodal lymphoma in dogs (v1.0)—a Veterinary Cooperative Oncology Group (VCOG) consensus document. Vet. Comp. Oncol. 8, 28–37 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Broeckx, B. J. et al. Improved canine exome designs, featuring ncRNAs and increased coverage of protein coding genes. Sci. Rep. 5, 12810 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van der Auwera, G. & O’Connor, B. in Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. 1st edn (O’Reilly Media, 2020).

  67. McKenna, A. et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 1811–1817 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Hendricks, W. P. D. et al. Somatic inactivating PTPRJ mutations and dysregulated pathways identified in canine malignant melanoma by integrated comparative genomic analysis. PLoS Genet. 14, e1007589 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Amin, S. B. et al. Comparative molecular life history of spontaneous canine and human gliomas. Cancer Cell 37, 243–257.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bai, B. et al. DoGSD: the dog and wolf genome SNP database. Nucleic Acids Res. 43, D777–D783 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Rosales, R. A., Drummond, R. D., Valieris, R., Dias-Neto, E. & da Silva, I. T. signeR: an empirical Bayesian approach to mutational signature discovery. Bioinformatics 33, 8–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the ‘Scientific Independence of young Researchers’ (SIR) grant received from the Ministero dell’Università (K9LYMPHOMET, protocol RBSI14EDX9).

Author information

Authors and Affiliations

Authors

Contributions

L.A. and F.B. designed the study, interpreted the data and wrote the manuscript; N.R. contributed to study design; L.M. provided samples and clinical data and contributed to manuscript revision; D.G., A.F., L.L., R.D.M., A.R. and L.R. carried out experiments; D.G. conducted bioinformatic analysis and contributed to data interpretation; D.G., A.F. and L.L. performed formal analysis and data visualization and conducted statistical analysis; G.B. and P.F. developed the in silico prediction models; A.A.M. interpreted data and revised the manuscript; all authors contributed to manuscript revision and approved the final draft.

Corresponding authors

Correspondence to Francesco Bertoni or Luca Aresu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Supplementary Tables 1–4.

Reporting Summary

Supplementary Data 1

Clinical details for the 77 dogs with DLBCL sequenced in this study.

Supplementary Data 2

Survival analysis of 77 cDLBCLs sequenced in this study.

Supplementary Data 3

Somatic mutations identified by WES in 77 cDLBCLs.

Supplementary Data 4

Variant filtering using COSMIC for known cancer genes and genes reported in human DLBCL (hDLBCL).

Supplementary Data 5

Significant regions affected by CNAs identified by GISTIC.

Supplementary Data 6

CNAs significantly associated with TTP and LSS (FDR < 0.05).

Supplementary Data 7

Median TTP and LSS and survival analysis in dogs carrying CFA13, CFA14 and CFA31 aberrations.

Supplementary Data 8

Significant associations between gene mutations and clinicopathological variables.

Supplementary Data 9

GSEA in cDLBCL based on DDX3X, SETD2, TP53, MYC, TRAF3, POT1 and FBXW7 mutational status (mut versus WT).

Supplementary Data 10

Clinical details for the 56 dogs with DLBCL included in TP53 mutational analysis.

Supplementary Data 11

TP53 mutations identified in the validation cohort of 56 cDLBCLs.

Supplementary Data 12

Survival analysis of 56 cDLBCLs analyzed for TP53 mutation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannuzzi, D., Marconato, L., Fanelli, A. et al. The genomic landscape of canine diffuse large B-cell lymphoma identifies distinct subtypes with clinical and therapeutic implications. Lab Anim 51, 191–202 (2022). https://doi.org/10.1038/s41684-022-00998-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-022-00998-x

  • Springer Nature America, Inc.

Navigation