Skip to main content
Log in

Tutorial: integrative computational analysis of bulk RNA-sequencing data to characterize tumor immunity using RIMA

  • Review Article
  • Published:

From Nature Protocols

View current issue Submit your manuscript

This article has been updated

Abstract

RNA-sequencing (RNA-seq) has become an increasingly cost-effective technique for molecular profiling and immune characterization of tumors. In the past decade, many computational tools have been developed to characterize tumor immunity from gene expression data. However, the analysis of large-scale RNA-seq data requires bioinformatics proficiency, large computational resources and cancer genomics and immunology knowledge. In this tutorial, we provide an overview of computational analysis of bulk RNA-seq data for immune characterization of tumors and introduce commonly used computational tools with relevance to cancer immunology and immunotherapy. These tools have diverse functions such as evaluation of expression signatures, estimation of immune infiltration, inference of the immune repertoire, prediction of immunotherapy response, neoantigen detection and microbiome quantification. We describe the RNA-seq IMmune Analysis (RIMA) pipeline integrating many of these tools to streamline RNA-seq analysis. We also developed a comprehensive and user-friendly guide in the form of a GitBook with text and video demos to assist users in analyzing bulk RNA-seq data for immune characterization at both individual sample and cohort levels by using RIMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Flowchart of immune analysis of bulk RNA-seq data using RNA-seq IMmune Analysis (RIMA).
Fig. 2: Running time of RIMA pipeline.

Similar content being viewed by others

Data availability

The dataset used for testing the pipeline running time in Fig. 2 and in the RIMA online tutorial was obtained from Sequence Read Archive PRJNA482620 via ref. 109.

Code availability

The RIMA source code is available at https://github.com/liulab-dfci/RIMA_pipeline and as Supplementary Software 1. The online tutorial is available at https://liulab-dfci.github.io/RIMA/.

Change history

  • 17 July 2023

    In the verzion of this article initially published, the alternating color groups in the Table 1 "Tasks" rows were offset and are now corrected in the HTML and PDF versions of the article.

References

  1. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2017).

  4. Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Łuksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ayers, M. et al. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, J. et al. Immune receptor repertoires in pediatric and adult acute myeloid leukemia. Genome Med. 11, 73 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hopkins, A. C. et al. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight 3, e122092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, H. X., Song, M., Maecker, H. T. & Gnjatic, S. Network for biomarker immunoprofiling for cancer immunotherapy: Cancer Immune Monitoring and Analysis Centers and Cancer Immunologic Data Commons (CIMAC-CIDC). Clin. Cancer Res. 27, 5038–5048 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl Acad. Sci. USA 111, E5593–E5601 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Halperin, R. F. et al. Improved methods for RNAseq-based alternative splicing analysis. Sci. Rep. 11, 1–15 (2021).

    Article  Google Scholar 

  20. Trincado, J. L. et al. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 19, 40 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zeng, Z. et al. Cross-site concordance evaluation of tumor DNA and RNA sequencing platforms for the CIMAC-CIDC Network. Clin. Cancer Res. 27, 5049–5061 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Anders, S., Pyl, P. T. & Huber, W. HTSeq — a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).

    Article  CAS  Google Scholar 

  25. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, C., Zhang, B., Lin, L.-L. & Zhao, S. Evaluation and comparison of computational tools for RNA-seq isoform quantification. BMC Genomics 18, 583 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Espín-Pérez, A. et al. Comparison of statistical methods and the use of quality control samples for batch effect correction in human transcriptome data. PLoS One 13, e0202947 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schurch, N. J. et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22, 839–851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).

    Article  PubMed  Google Scholar 

  36. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wixon, J. & Kell, D. The Kyoto Encyclopedia of Genes and Genomes—KEGG. Yeast 17, 48–55 (2000).

    CAS  PubMed  Google Scholar 

  38. Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).

    Article  Google Scholar 

  39. Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7 (2013).

    Article  Google Scholar 

  41. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lavin, Y. et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, T. et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77, e108–e110 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Finotello, F. et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 11, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E. & Gfeller, D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife 6, e26476 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17, 218 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sturm, G., Finotello, F. & List, M. Immunedeconv: an R package for unified access to computational methods for estimating immune cell fractions from bulk RNA-sequencing data. Methods Mol. Biol. 2120, 223–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 35, 14 (2019).

    Article  Google Scholar 

  51. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, K. et al. Deconvolving clinically relevant cellular immune cross-talk from bulk gene expression using CODEFACS and LIRICS stratifies patients with melanoma to Anti-PD-1 therapy. Cancer Discov. 12, 1088–1105 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chang, L., Chang, M., Chang, H. M. & Chang, F. Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl. Immunohistochem. Mol. Morphol. 26, e15–e21 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Niu, B. et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 30, 1015–1016 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Salipante, S. J., Scroggins, S. M., Hampel, H. L., Turner, E. H. & Pritchard, C. C. Microsatellite instability detection by next generation sequencing. Clin. Chem. 60, 1192–1199 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Niu, B. et al. msisensor2: Microsatellite instability (MSI) detection for tumor only data. Github https://github.com/niu-lab/msisensor2 (2019).

  60. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Yam-Puc, J. C., Zhang, L., Zhang, Y. & Toellner, K.-M. Role of B-cell receptors for B-cell development and antigen-induced differentiation. F1000Res. 7, 429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Teraguchi, S. et al. Methods for sequence and structural analysis of B and T cell receptor repertoires. Comput. Struct. Biotechnol. J. 18, 2000–2011 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bolotin, D. A. et al. Antigen receptor repertoire profiling from RNA-seq data. Nat. Biotechnol. 35, 908–911 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, B. et al. Landscape of tumor-infiltrating T cell repertoire of human cancers. Nat. Genet. 48, 725–732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hu, X. et al. Landscape of B cell immunity and related immune evasion in human cancers. Nat. Genet. 51, 560–567 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song, L. et al. TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data. Nat. Methods 18, 627–630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lefranc, M.-P. et al. IMGT®, the international ImMunoGeneTics information system®. Nucleic Acids Res. 37, D1006–D1012 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Selitsky, S. R. et al. Prognostic value of B cells in cutaneous melanoma. Genome Med. 11, 36 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Xu-Monette, Z. Y. et al. Immunoglobulin somatic hypermutation has clinical impact in DLBCL and potential implications for immune checkpoint blockade and neoantigen-based immunotherapies. J. Immunother. Cancer 7, 272 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fan, Y. et al. MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data. Genome Biol. 17, 178 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Larson, D. E. et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 28, 311–317 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun, Z., Bhagwate, A., Prodduturi, N., Yang, P. & Kocher, J.-P. A. Indel detection from RNA-seq data: tool evaluation and strategies for accurate detection of actionable mutations. Brief. Bioinform. 18, 973–983 (2017).

    CAS  PubMed  Google Scholar 

  77. Kaya, C. et al. Limitations of detecting genetic variants from the RNA sequencing data in tissue and fine-needle aspiration samples. Thyroid 31, 589–595 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gao, Q. et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 23, 227–238.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Latysheva, N. S. & Babu, M. M. Discovering and understanding oncogenic gene fusions through data intensive computational approaches. Nucleic Acids Res. 44, 4487–4503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Haas, B. J. et al. Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol. 20, 1–16 (2019)

  82. Torres-García, W. et al. PRADA: pipeline for RNA sequencing data analysis. Bioinformatics 30, 2224–2226 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, Z. et al. Neoantigen: a new breakthrough in tumor immunotherapy. Front. Immunol. 12, 672356 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Orenbuch, R. et al. arcasHLA: high-resolution HLA typing from RNAseq. Bioinformatics 36, 33–40 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Boegel, S. et al. HLA typing from RNA-Seq sequence reads. Genome Med. 4, 102 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Szolek, A. et al. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30, 3310–3316 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Peng, M. et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol. Cancer 18, 128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lu, Y.-C. & Robbins, P. F. Cancer immunotherapy targeting neoantigens. Semin. Immunol. 28, 22–27 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Howitt, B. E. et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 1, 1319–1323 (2015).

    Article  PubMed  Google Scholar 

  92. Chang, K. et al. Immune profiling of premalignant lesions in patients with lynch syndrome. JAMA Oncol. 4, 1085–1092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hundal, J. et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 8, 11 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jurtz, V. et al. NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol. 199, 3360–3368 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. O’Donnell, T. J. et al. MHCflurry: open-source class I MHC binding affinity prediction. Cell Syst. 7, 129–132.e4 (2018).

    Article  PubMed  Google Scholar 

  96. Nielsen, M., Lundegaard, C. & Lund, O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinforma. 8, 238 (2007).

    Article  Google Scholar 

  97. Vivarelli, S. et al. Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel) 11, 38 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lu, J. et al. Metagenome analysis using the Kraken software suite. Nat. Protoc. 17, 2815–2839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Khoury, J. D. et al. Landscape of DNA virus associations across human malignant cancers: analysis of 3,775 cases using RNA-Seq. J. Virol. 87, 8916–8926 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Walker, M. A. et al. GATK PathSeq: a customizable computational tool for the discovery and identification of microbial sequences in libraries from eukaryotic hosts. Bioinformatics 34, 4287–4289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zeng, Z. et al. TISMO: syngeneic mouse tumor database to model tumor immunity and immunotherapy response. Nucleic Acids Res. 50, D1391–D1397 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Schoenfeld, J. D. et al. Durvalumab plus tremelimumab alone or in combination with low-dose or hypofractionated radiotherapy in metastatic non-small-cell lung cancer refractory to previous PD(L)-1 therapy: an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 23, 279–291 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao, J. et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat. Med. 25, 462–469 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Penter, L. et al. Mechanisms of response and resistance to combination decitabine and ipilimumab for transplant naïve and post-transplant AML/MDS. Blood 140, 10198–10199 (2022).

    Article  Google Scholar 

  111. Penter, L. et al. Molecular and cellular features of CTLA-4 blockade for relapsed myeloid malignancies after transplantation. Blood 137, 3212–3217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang, W. et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat. Med. 25, 767–775 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hsu, J.-M., Li, C.-W., Lai, Y.-J. & Hung, M.-C. Posttranslational modifications of PD-L1 and their applications in cancer therapy. Cancer Res. 78, 6349–6353 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gopanenko, A. V., Kosobokova, E. N. & Kosorukov, V. S. Main strategies for the identification of neoantigens. Cancers (Basel) 12, 2879 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. van Galen, P. et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265–1281.e24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Loi, S. et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res. 22, 1499–1509 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Ranzoni, A. M. et al. Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis. Cell Stem Cell 28, 472–487.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 1–17 (2021).

    Article  Google Scholar 

  119. Grosselin, K. et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 51, 1060–1066 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Menyhárt, O. & Győrffy, B. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput. Struct. Biotechnol. J. 19, 949–960 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Leng, D. et al. A benchmark study of deep learning-based multi-omics data fusion methods for cancer. Genome Biol. 23, 171 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Li, B. et al. Fresh tissue multi-omics profiling reveals immune classification and suggests immunotherapy candidates for conventional chondrosarcoma. Clin. Cancer Res. 27, 6543–6558 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang, Y. et al. A multi-omics-based serial deep learning approach to predict clinical outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small-cell lung cancer. Am. J. Transl. Res. 13, 743–756 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge members of the Shirley Liu laboratory, the Center for Functional Cancer Epigenetics and the Cancer Immune Data Commons for their helpful suggestions and support during pipeline development. Support for this project is provided by the PACT and made possible through funding provided to the FNIH by AbbVie Inc., Amgen Inc., Boehringer-Ingelheim Pharma GmbH & Co. KG, Bristol-Myers Squibb, Celgene Corporation, Genentech Inc., Gilead, GlaxoSmithKline plc, Janssen Pharmaceutical Companies of Johnson & Johnson, Novartis Institutes for Biomedical Research, Pfizer Inc. and Sanofi.

Author information

Authors and Affiliations

Authors

Contributions

L.Y., J.W., A.J., S.B., C.J.W. and Y.L. developed and optimized the RIMA pipeline. Y.L., J.W., L.Y. and J.A. drafted the manuscript. Y.L., J.A. and L.Y. drafted the online tutorial. L.S. provided suggestions for immune repertoire analysis. J.F. provided suggestions for immune response analysis. L.T., A.S., C.T., Y.Z., Z.Z., G.B., M.T., X.Q. and H.W.L. participated in conceptualization and project discussion. Y.L., F.M. and X.S.L. supervised the project. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yang Liu or X. Shirley Liu.

Ethics declarations

Competing interests

X.S.L. conducted the work while being on the faculty at the Dana-Farber Cancer Institute and is currently a board member and CEO of GV20 Therapeutics. F.M. is a cofounder of and has equity in Harbinger Health, has equity in Zephyr AI and serves as a consultant for Harbinger Health, Zephyr AI and Red Cell Partners. F.M. declares that none of these relationships are directly or indirectly related to the content of this manuscript. All other authors do not have any conflicts.

Peer review

Peer review information

Nature Protocols thanks Zlatko Trajanoski, Zemin Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Software 1

Source code of the RIMA pipeline

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wang, J., Altreuter, J. et al. Tutorial: integrative computational analysis of bulk RNA-sequencing data to characterize tumor immunity using RIMA. Nat Protoc 18, 2404–2414 (2023). https://doi.org/10.1038/s41596-023-00841-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00841-8

  • Springer Nature Limited

Navigation