Skip to main content
Log in

Stabilization and structure determination of integral membrane proteins by termini restraining

  • Protocol
  • Published:

From Nature Protocols

View current issue Submit your manuscript

Abstract

Integral membrane proteins isolated from cellular environment often lose activity and native conformation required for functional analyses and structural studies. Even in their native state, they lack sufficient surfaces to form crystal contacts. Furthermore, most of them are too small for cryogenic electron microscopy detection and too big for solution NMR. To overcome these difficulties, we recently developed a strategy to stabilize the folded state of membrane proteins by restraining their two termini with a self-assembling protein coupler. The termini-restrained membrane proteins from distinct functional families retain their activities and show increased stability and yield. This strategy enables their structure determination at near-atomic resolution by facilitating the entire pipeline from crystallization, crystal identification, diffraction enhancement and phase determination, to electron density improvement. Furthermore, stabilization of membrane proteins enables their biochemical and biophysical characterization. Here we present the protocol of membrane protein engineering (2 weeks), quality assessment (1–2 weeks), protein production (1–6 weeks), crystallization (1–2 weeks), diffraction improvement (1–3 months) and crystallographic data analysis (1 week). This protocol is intended not only for structural biologists, but also for biochemists, biophysicists and pharmaceutical scientists whose research focuses on membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Overview of the concept and protocol of termini restraining.
Fig. 2: Quality assessment of restrained membrane proteins.
Fig. 3: Crystal identification and diffraction improvement of restrained membrane protein.
Fig. 4: Structure determination using the coupler structure and diffraction data.
Fig. 5: Expression vectors and construct generation.

Similar content being viewed by others

Data availability

The data presented in this protocol have been previously published13,14,15,16,17, and associated raw data are provided in the original articles. Source data are provided with this paper.

References

  1. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  2. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Fagerberg, L., Jonasson, K., von Heijne, G., Uhlen, M. & Berglund, L. Prediction of the human membrane proteome. Proteomics 10, 1141–1149 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Yildirim, M. A., Goh, K. I., Cusick, M. E., Barabasi, A. L. & Vidal, M. Drug–target network. Nat. Biotechnol. 25, 1119–1126 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Bill, R. M. et al. Overcoming barriers to membrane protein structure determination. Nat. Biotechnol. 29, 335–340 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Carpenter, E. P., Beis, K., Cameron, A. D. & Iwata, S. Overcoming the challenges of membrane protein crystallography. Curr. Opin. Struct. Biol. 18, 581–586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller, J. L. & Tate, C. G. Engineering an ultra-thermostable β(1)-adrenoceptor. J. Mol. Biol. 413, 628–638 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Serrano-Vega, M. J., Magnani, F., Shibata, Y. & Tate, C. G. Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. Proc. Natl Acad. Sci. USA 105, 877–882 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tate, C. G. A crystal clear solution for determining G-protein-coupled receptor structures. Trends Biochem. Sci. 37, 343–352 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Magnani, F. et al. A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. Nat. Protoc. 11, 1554–1571 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. De Zorzi, R., Mi, W., Liao, M. & Walz, T. Single-particle electron microscopy in the study of membrane protein structure. Microscopy 65, 81–96 (2016).

    Article  PubMed  Google Scholar 

  12. Gauto, D. F. et al. Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex. Nat. Commun. 10, 2697 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu, S., Li, S., Yang, Y. & Li, W. Termini restraining of small membrane proteins enables structure determination at near-atomic resolution. Sci. Adv. https://doi.org/10.1126/sciadv.abe3717 (2020).

  14. Liu, S. et al. Structural basis of antagonizing the vitamin K catalytic cycle for anticoagulation. Science https://doi.org/10.1126/science.abc5667 (2021).

  15. Yang, Y. et al. Open conformation of tetraspanins shapes interaction partner networks on cell membranes. EMBO J. 39, e105246 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, S., Liu, S., Liu, X. R., Zhang, M. M. & Li, W. Competitive tight-binding inhibition of VKORC1 underlies warfarin dosage variation and antidotal efficacy. Blood Adv. 4, 2202–2212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, S., Liu, S., Yang, Y. & Li, W. Characterization of warfarin inhibition kinetics requires stabilization of intramembrane vitamin K epoxide reductases. J. Mol. Biol. 432, 5197–5208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daley, D. O. et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321–1323 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, H., Melen, K., Osterberg, M. & von Heijne, G. A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc. Natl Acad. Sci. USA 103, 11142–11147 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, W. & Li, F. Cross-crystal averaging with search models to improve molecular replacement phases. Structure 19, 155–161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 A resolution. Nature 414, 43–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, J. M. et al. Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter. Nature 517, 396–400 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl Acad. Sci. USA 96, 11241–11246 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cabantous, S., Terwilliger, T. C. & Waldo, G. S. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat. Biotechnol. 23, 102–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Pierre, B., Xiong, T., Hayles, L., Guntaka, V. R. & Kim, J. R. Stability of a guest protein depends on stability of a host protein in insertional fusion. Biotechnol. Bioeng. 108, 1011–1020 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Palanisamy, N. et al. Split intein-mediated selection of cells containing two plasmids using a single antibiotic. Nat. Commun. 10, 4967 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Foit, L. et al. Optimizing protein stability in vivo. Mol. Cell 36, 861–871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, R. et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535, 164–168 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fu, Q., Piai, A., Chen, W., Xia, K. & Chou, J. J. Structure determination protocol for transmembrane domain oligomers. Nat. Protoc. 14, 2483–2520 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hagn, F., Nasr, M. L. & Wagner, G. Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat. Protoc. 13, 79–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Watzka, M. et al. Thirteen novel VKORC1 mutations associated with oral anticoagulant resistance: insights into improved patient diagnosis and treatment. J. Thromb. Haemost. 9, 109–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Fasco, M. J., Principe, L. M., Walsh, W. A. & Friedman, P. A. Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes. Biochemistry 22, 5655–5660 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. Hodroge, A., Longin-Sauvageon, C., Fourel, I., Benoit, E. & Lattard, V. Biochemical characterization of spontaneous mutants of rat VKORC1 involved in the resistance to antivitamin K anticoagulants. Arch. Biochem. Biophys. 515, 14–20 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Bevans, C. G. et al. Determination of the warfarin inhibition constant Ki for vitamin K 2,3-epoxide reductase complex subunit-1 (VKORC1) using an in vitro DTT-driven assay. Biochim. Biophys. Acta 1830, 4202–4210 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Schwarzer, D. & Cole, P. A. Protein semisynthesis and expressed protein ligation: chasing a protein’s tail. Curr. Opin. Chem. Biol. 9, 561–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Li, C. et al. FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnol. 11, 92–92 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, H. & Kim, H. Membrane topology of transmembrane proteins: determinants and experimental tools. Biochem. Biophys. Res. Commun. 453, 268–276 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Alexandrov, A. I., Mileni, M., Chien, E. Y., Hanson, M. A. & Stevens, R. C. Microscale fluorescent thermal stability assay for membrane proteins. Structure 16, 351–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Thomas, J. A. & Tate, C. G. Quality control in eukaryotic membrane protein overproduction. J. Mol. Biol. 426, 4139–4154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miroux, B. & Walker, J. E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Wagner, S. et al. Tuning Escherichia coli for membrane protein overexpression. Proc. Natl Acad. Sci. USA 105, 14371–14376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tusnády, G. E., Kalmár, L. & Simon, I. TOPDB: Topology Data Bank of Transmembrane Proteins. Nucleic Acids Res. 36, https://doi.org/10.1093/nar/gkm751 (2008).

  48. Jones, D. T. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23, 538–544 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Nugent, T. & Jones, D. T. Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics 10, 159 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Käll, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res. 35, https://doi.org/10.1093/nar/gkm256 (2007).

  51. Krogh, a, Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Reddy, A. et al. Reliability of nine programs of topological predictions and their application to integral membrane channel and carrier proteins. J. Mol. Microbiol. Biotechnol. 24, 161–190 (2014).

    CAS  PubMed  Google Scholar 

  53. Kulzer, S., Petersen, W., Baser, A., Mandel, K. & Przyborski, J. M. Use of self-assembling GFP to determine protein topology and compartmentalisation in the Plasmodium falciparum-infected erythrocyte. Mol. Biochem. Parasitol. 187, 87–90 (2013).

    Article  PubMed  Google Scholar 

  54. Toddo, S. et al. Application of split-green fluorescent protein for topology mapping membrane proteins in Escherichia coli. Protein Sci. 21, 1571–1576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Doi, N. & Yanagawa, H. Design of generic biosensors based on green fluorescent proteins with allosteric sites by directed evolution. FEBS Lett. 453, 305–307 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Ghosh, I., Hamilton, A. D. & Regan, L. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659 (2000).

    Article  CAS  Google Scholar 

  57. Romei, M. G. & Boxer, S. G. Split green fluorescent proteins: scope, limitations, and outlook. Annu. Rev. Biophys. 48, 19–44 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Oates, M. E. et al. D(2)P(2): database of disordered protein predictions. Nucleic Acids Res. 41, D508–D516 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, X., Zaro, J. L. & Shen, W. C. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Zheng, L., Baumann, U. & Reymond, J. L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cowtan, K. D. Recent developments in classical density modification. Acta Crystallogr. D. Biol. Crystallogr. 66, 470–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cowtan, K. D. ‘dm’: an automated procedure for phase improvement by density modification. Jt. CCP4 ESF-EACBM Newsl. Protein Crystallogr. 31, 34–38 (1994).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the W. M. Keck Foundation (Forefront of Science Award), NHLBI (R01 HL121718), Children’s Discovery Institute (MCII 2020-854), NEI (R21 EY028705), NIGMS (R01 GM131008) and American Heart Association (20CSA35310354) to W.L. Crystallographic data collection used NE-CAT beamlines (GM124165), a Pilatus detector (RR029205) and an Eiger detector.

Author information

Authors and Affiliations

Authors

Contributions

W.L., S. Liu and S. Li conceived the study. S. Liu, S. Li and W.L. developed the protocols. W.L. and S. Liu wrote the manuscript with contributions from S. Li and A.M.K.

Corresponding author

Correspondence to Weikai Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Bernadette Byrne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Liu, S. et al. Sci. Adv. 6, eabe3717 (2020): https://doi.org/10.1126/sciadv.abe3717

Liu, S. et al. Science 371, eabc5667 (2021): https://doi.org/10.1126/science.abc5667

Yang, Y. et al. EMBO J. 39, e105246, (2020): https://doi.org/10.15252/embj.2020105246

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Table 1 and Supplementary Fig. 1.

Supplementary Data 1

DNA sequence of sfGFP in pPICZ-derivatized vector

Supplementary Data 2

DNA sequence of sfGFP restrained human VKOR in pPICZ-derivatized vector

Supplementary Data 3

DNA sequence of sfGFP restrained DsbB in PET28b vector

Source data

Source Data Fig. 2

Unprocessed western blots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Li, S., Krezel, A.M. et al. Stabilization and structure determination of integral membrane proteins by termini restraining. Nat Protoc 17, 540–565 (2022). https://doi.org/10.1038/s41596-021-00656-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00656-5

  • Springer Nature Limited

Navigation