Skip to main content
Log in

Ion channels as lipid sensors: from structures to mechanisms

  • Review Article
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

An Author Correction to this article was published on 17 December 2020

This article has been updated

Abstract

Ion channels play critical roles in cellular function by facilitating the flow of ions across the membrane in response to chemical or mechanical stimuli. Ion channels operate in a lipid bilayer, which can modulate or define their function. Recent technical advancements have led to the solution of numerous ion channel structures solubilized in detergent and/or reconstituted into lipid bilayers, thus providing unprecedented insight into the mechanisms underlying ion channel–lipid interactions. Here, we describe how ion channel structures have evolved to respond to both lipid modulators and lipid activators to control the electrical activities of cells, highlighting diverse mechanisms and common themes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Role of lipids in ion channel function.
Fig. 2: Structural diversity of lipid-gated and other VGL ion channels.
Fig. 3: Mechanisms of lipid action in VGL channels.
Fig. 4: MS channels have evolved diverse structures to respond to membrane tension.
Fig. 5: Mechanisms for sensing membrane tension.
Fig. 6: New insight into MscS function derived from structures solved in lipid membranes.
Fig. 7: Lipid modulation of pLGICs.

Similar content being viewed by others

Change history

References

  1. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998). Atomic resolution insight was gained into the structure of a tetrameric ion channel, providing an understanding as to how K+ ion channels exhibit high selectivity for K+ yet at the same time exhibit rapid rates of K+ conduction.

  3. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998). Structural insight into a mechanosensitive ion channel closely follows that of the KcsA structure from Doyle et al. (ref. 2).

  4. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

  5. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Hilf, R. J. C. & Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452, 375–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Sobolevsky, A. I., Rosconi, M. P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawate, T., Michel, J. C., Birdsong, W. T. & Gouaux, E. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460, 592–598 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu, F. H., Yarov-Yarovoy, V., Gutman, G. A. & Catterall, W. A. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol. Rev. 57, 387–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Duncan, A. L., Song, W. & Sansom, M. S. P. Lipid-dependent regulation of ion channels and G protein-coupled receptors: insights from structures and simulations. Annu. Rev. Pharmacol. Toxicol. 60, 31–50 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Poveda, J. A., Marcela Giudici, A., Lourdes Renart, M., Morales, A. & González-Ros, J. M. Towards understanding the molecular basis of ion channel modulation by lipids: Mechanistic models and current paradigms. Biochim. Biophys. Acta Biomembr. 1859, 1507–1516 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Corradi, V. et al. Emerging diversity in lipid-protein interactions. Chem. Rev. 119, 5775–5848 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Comoglio, Y. et al. Phospholipase D2 specifically regulates TREK potassium channels via direct interaction and local production of phosphatidic acid. Proc. Natl. Acad. Sci. USA 111, 13547–13552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dart, C. Lipid microdomains and the regulation of ion channel function. J. Physiol. (Lond.) 588, 3169–3178 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, A. G. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta Biomembr. 1666, 62–87 (2004).

    Article  CAS  Google Scholar 

  17. Jost, P. C., Griffith, O. H., Capaldi, R. A. & Vanderkooi, G. Evidence for boundary lipid in membranes. Proc. Natl. Acad. Sci. USA 70, 480–484 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hesketh, T. R. et al. Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Biochemistry 15, 4145–4151 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. Marsh, D. & Barrantes, F. J. Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc. Natl. Acad. Sci. USA 75, 4329–4333 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Narayanaswami, V. & McNamee, M. G. Protein-lipid interactions and Torpedo californica nicotinic acetylcholine receptor function. 2. Membrane fluidity and ligand-mediated alteration in the accessibility of γ subunit cysteine residues to cholesterol. Biochemistry 32, 12420–12427 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Marsh, D. Electron spin resonance in membrane research: protein-lipid interactions from challenging beginnings to state of the art. Eur. Biophys. J. 39, 513–525 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Hibino, H. et al. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol. Rev. 90, 291–366 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, C. L., Feng, S. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391, 803–806 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Hansen, S. B., Tao, X. & MacKinnon, R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477, 495–498 (2011). The structure of Kir2.2 in the presence and absence of a soluble PIP2 analog reveals the mechanisms by which PIP2 induces channel gating, a mechanism central to all Kir channels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun, J. & MacKinnon, R. Structural basis of human KCNQ1 modulation and gating. Cell 180, 340–347.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Dascal, N. Signalling via the G protein-activated K+ channels. Cell. Signal. 9, 551–573 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Whorton, M. R. & MacKinnon, R. X-ray structure of the mammalian GIRK2-βγ G-protein complex. Nature 498, 190–197 (2013). The G-protein-bound structure of GIRK2 reveals how channel activation in Kir channels has evolved to require the binding of both G-protein and PIP2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Whorton, M. R. & MacKinnon, R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147, 199–208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mathiharan, Y.K. et al. Structural basis of GIRK2 channel modulation by cholesterol and PIP2. Preprint at bioRxiv https://doi.org/10.1101/2020.06.04.134544 (2020).

  31. Hilgemann, D. W. & Ball, R. Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science 273, 956–959 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Lee, K. P. K., Chen, J. & MacKinnon, R. Molecular structure of human KATP in complex with ATP and ADP. eLife 6, e32481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Duncan, A. L., Corey, R. A. & Sansom, M. S. P. Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels. Proc. Natl. Acad. Sci. USA 117, 7803–7813 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, S. J. et al. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids. J. Gen. Physiol. 148, 227–237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng, W. W. L., D’Avanzo, N., Doyle, D. A. & Nichols, C. G. Dual-mode phospholipid regulation of human inward rectifying potassium channels. Biophys. J. 100, 620–628 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Romanenko, V. G. et al. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys. J. 87, 3850–3861 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barbera, N., Ayee, M. A. A., Akpa, B. S. & Levitan, I. Molecular dynamics simulations of Kir2.2 interactions with an ensemble of cholesterol molecules. Biophys. J. 115, 1264–1280 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levitan, I., Singh, D. K. & Rosenhouse-Dantsker, A. Cholesterol binding to ion channels. Front. Physiol. 5, 65 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wulff, H., Castle, N. A. & Pardo, L. A. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov. 8, 982–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Long, S. B., Campbell, E. B. & MacKinnon, R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309, 903–908 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Zaydman, M. A. et al. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc. Natl. Acad. Sci. USA 110, 13180–13185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, J. & MacKinnon, R. Cryo-EM structure of a KCNQ1/CaM complex reveals insights into congenital long QT syndrome. Cell 169, 1042–1050 (2017). This structure shows why PIP2 is a structural requirement for the activation of the voltage-gated K+ channel Kv7.1. PIP2 promotes coupling between the voltage sensor and pore domains. This interdomain coupling is a prominent feature of ion channel–lipid interactions.

  43. Lee, C. H. & MacKinnon, R. Structures of the human HCN1 hyperpolarization-activated channel. Cell 168, 111–120.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, W. & MacKinnon, R. Cryo-EM structure of the open Human Ether-à-go-go-Related K+ Channel hERG. Cell 169, 422–430.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Clark, M. D., Contreras, G. F., Shen, R. & Perozo, E. Electromechanical coupling in the hyperpolarization-activated K+ channel KAT1. Nature 583, 145–149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, K., Li, L. & Luan, S. An essential function of phosphatidylinositol phosphates in activation of plant shaker-type K+ channels. Plant J. 42, 433–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, X. et al. TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 151, 372–383 (2012).

  48. She, J. et al. Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature 556, 130–134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. She, J. et al. Structural mechanisms of phospholipid activation of the human TPC2 channel. eLife 8, e45222 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hughes, T. E. T. et al. Structural insights on TRPV5 gating by endogenous modulators. Nat. Commun. 9, 4198 (2018). The TRPV5 structure shows how the fundamental mechanism underlying PIP2 interdomain coupling in Kv7 channels has evolved to create a lipid-gated TRP channel.

  51. McGoldrick, L. L. et al. Opening of the human epithelial calcium channel TRPV6. Nature 553, 233–237 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Z., Tóth, B., Szollosi, A., Chen, J. & Csanády, L. Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation. eLife 7, e36409 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yin, Y. et al. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science 363, eaav9334 (2019).

  54. Zubcevic, L. et al. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 23, 180–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fan, C., Choi, W., Sun, W., Du, J. & Lü, W. Structure of the human lipid-gated cation channel TRPC3. eLife 7, e36852 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lichtenegger, M. et al. An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nat. Chem. Biol. 14, 396–404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bai, Y. et al. Structural basis for pharmacological modulation of the TRPC6 channel. eLife 9, e53311 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jin, P. et al. Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547, 118–122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rohács, T. in Mammalian Transient Receptor Potential (TRP) Cation Channels: Volume II (eds. Nilius, B. & Flockerzi, V.) 1143–1176 (Springer International Publishing, 2014); https://doi.org/10.1007/978-3-319-05161-1_18

  61. Hite, R. K., Butterwick, J. A. & MacKinnon, R. Phosphatidic acid modulation of Kv channel voltage sensor function. eLife 3, e04366 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cox, C. D., Bavi, N. & Martinac, B. Bacterial mechanosensors. Annu. Rev. Physiol. 80, 71–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Douguet, D. & Honoré, E. Mammalian mechanoelectrical transduction: structure and function of force-gated ion channels. Cell 179, 340–354 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Cox, C. D., Bavi, N. & Martinac, B. Biophysical principles of ion-channel-mediated mechanosensory transduction. Cell Rep. 29, 1–12 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Bass, R. B., Strop, P., Barclay, M. T. & Rees, D. C. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 1582–1587 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Brohawn, S. G., del Mármol, J. & MacKinnon, R. Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335, 436–441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 573, 225–229 (2019). A mixture of electron paramagnetic resonance spectroscopy and site-directed spin labeling was used to elucidate the large conformational changes that lead to gating of the bacterial MscL, thus providing clear insight into the mechanisms underlying mechanosensation.

    Article  CAS  PubMed  Google Scholar 

  68. Guo, Y. R. & MacKinnon, R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. eLife 6, e33660 (2017). Piezo highlights the incredible diversity of mechanosensitive ion channel structures, which lead to diverse mechanisms of function. Piezo’s unique structure allows it to respond to subtle changes in bilayer tension by sensing changes in membrane curvature.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhao, Q. et al. Structure and mechanogating mechanism of the Piezo1 channel. Nature 554, 487–492 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Levina, N. et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Bavi, N. et al. The role of MscL amphipathic N terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels. Nat. Commun. 7, 11984 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liang, X. & Howard, J. Structural biology: Piezo senses tension through curvature. Curr. Biol. 28, R357–R359 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brohawn, S. G. How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann. NY Acad. Sci. 1352, 20–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Saotome, K. et al. Structure of the mechanically activated ion channel Piezo1. Nature 554, 481–486 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Haselwandter, C. A. & MacKinnon, R. Piezo’s membrane footprint and its contribution to mechanosensitivity. eLife 7, e41968 (2018). Mechanical calculations show how the unique structure imparts on Piezo1 contradictory properties: a low threshold for activation and a steep tensile response while maintaining ion selectivity in the open state.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Brohawn, S. G., Campbell, E. B. & MacKinnon, R. Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516, 126–130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dong, Y. Y. et al. K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 347, 1256–1259 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Honoré, E., Patel, A. J., Chemin, J., Suchyna, T. & Sachs, F. Desensitization of mechano-gated K2P channels. Proc. Natl. Acad. Sci. USA 103, 6859–6864 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chemin, J. et al. A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J. 24, 44–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Woo, J. et al. Triple arginine residues in the proximal C-terminus of TREK K+ channels are critical for biphasic regulation by phosphatidylinositol 4,5-bisphosphate. Am. J. Physiol. Cell Physiol. 316, C312–C324 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Soussia, I. B. et al. Antagonistic effect of a cytoplasmic domain on the basal activity of polymodal potassium channels. Front. Mol. Neurosci. 11, 301 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gamal El-Din, T. M., Lenaeus, M. J., Zheng, N. & Catterall, W. A. Fenestrations control resting-state block of a voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 115, 13111–13116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rasmussen, T., Flegler, V. J., Rasmussen, A. & Böttcher, B. Structure of the mechanosensitive channel MscS embedded in the membrane bilayer. J. Mol. Biol. 431, 3081–3090 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Reddy, B., Bavi, N., Lu, A., Park, Y. & Perozo, E. Molecular basis of force-from-lipids gating in the mechanosensitive channel MscS. eLife 8, e50486 (2019). The lipid nanodisc reconstituted MscS channel structure highlights regions of the protein that were not resolved in detergent-solubilized crystal structures, thus leading to a revised structural model with important mechanistic consequences. The new structure also dramatically highlights the importance of bound lipids in both mechanosensation and ion channel function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cecchini, M. & Changeux, J.-P. The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation. Neuropharmacology 96, 137–149 (2015). Pt B.

    Article  CAS  PubMed  Google Scholar 

  87. Baenziger, J. E., Hénault, C. M., Therien, J. P. D. & Sun, J. Nicotinic acetylcholine receptor–lipid interactions: Mechanistic insight and biological function. Biochim. Biophys. Acta Biomembr. 1848, 1806–1817 (2015).

    Article  CAS  Google Scholar 

  88. Barrantes, F. J. Phylogenetic conservation of protein–lipid motifs in pentameric ligand-gated ion channels. Biochim. Biophys. Acta Biomembr. 1848, 1796–1805 (2015).

    Article  CAS  Google Scholar 

  89. daCosta, C. J. B. & Baenziger, J. E. A lipid-dependent uncoupled conformation of the acetylcholine receptor. J. Biol. Chem. 284, 17819–17825 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hénault, C. M. et al. A lipid site shapes the agonist response of a pentameric ligand-gated ion channel. Nat. Chem. Biol. 15, 1156–1164 (2019). A comprehensive biophysical approach is used to elucidate how lipid binding to a pentameric ligand-gated ion channel alters protein dynamics to shape the agonist-induced response.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tong, A. et al. Direct binding of phosphatidylglycerol at specific sites modulates desensitization of a ligand-gated ion channel. eLife 8, e50766 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. daCosta, C. J. B., Dey, L., Therien, J. P. D. & Baenziger, J. E. A distinct mechanism for activating uncoupled nicotinic acetylcholine receptors. Nat. Chem. Biol. 9, 701–707 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Baenziger, J. E., Morris, M. L., Darsaut, T. E. & Ryan, S. E. Effect of membrane lipid composition on the conformational equilibria of the nicotinic acetylcholine receptor. J. Biol. Chem. 275, 777–784 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. daCosta, C. J. B. et al. Anionic lipids allosterically modulate multiple nicotinic acetylcholine receptor conformational equilibria. J. Biol. Chem. 284, 33841–33849 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thompson, M. J. & Baenziger, J. E. Structural basis for the modulation of pentameric ligand-gated ion channel function by lipids. Biochim. Biophys. Acta Biomembr. 1862, 183304 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Laverty, D. et al. Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature 565, 516–520 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Walsh, R. M. Jr. et al. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor. Nature 557, 261–265 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gharpure, A. et al. Agonist selectivity and ion permeation in the α3β4 ganglionic nicotinic receptor. Neuron 104, 501–511.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carswell, C. L., Sun, J. & Baenziger, J. E. Intramembrane aromatic interactions influence the lipid sensitivities of pentameric ligand-gated ion channels. J. Biol. Chem. 290, 2496–2507 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Kumar, P. et al. Cryo-EM structures of a lipid-sensitive pentameric ligand-gated ion channel embedded in a phosphatidylcholine-only bilayer. Proc. Natl. Acad. Sci. USA 117, 1788–1798 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Manna, M., Nieminen, T. & Vattulainen, I. Understanding the role of lipids in signaling through atomistic and multiscale simulations of cell membranes. Annu. Rev. Biophys. 48, 421–439 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Hedger, G. & Sansom, M. S. P. Lipid interaction sites on channels, transporters and receptors: recent insights from molecular dynamics simulations. Biochim. Biophys. Acta Biomembr. 1858, 2390–2400 (2016).

    Article  CAS  Google Scholar 

  103. Enkavi, G., Javanainen, M., Kulig, W., Róg, T. & Vattulainen, I. Multiscale simulations of biological membranes: the challenge to understand biological phenomena in a living substance. Chem. Rev. 119, 5607–5774 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by grant number 113312 from the Natural Sciences and Engineering Research Council of Canada to J.E.B.

Author information

Authors and Affiliations

Authors

Contributions

The article was written by both M.J.T. and J.E.B.

Corresponding author

Correspondence to John E. Baenziger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, M.J., Baenziger, J.E. Ion channels as lipid sensors: from structures to mechanisms. Nat Chem Biol 16, 1331–1342 (2020). https://doi.org/10.1038/s41589-020-00693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-00693-3

  • Springer Nature America, Inc.

This article is cited by

Navigation