Skip to main content
Log in

Cumulative polarization in conductive interfacial ferroelectrics

  • Article
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Ferroelectricity in atomically thin bilayer structures has been recently predicted1 and measured2,3,4 in two-dimensional materials with hexagonal non-centrosymmetric unit-cells. The crystal symmetry translates lateral shifts between parallel two-dimensional layers to sign changes in their out-of-plane electric polarization, a mechanism termed ‘slide-tronics’4. These observations have been restricted to switching between only two polarization states under low charge carrier densities5,6,7,8,9,10,11,12, limiting the practical application of the revealed phenomena13. To overcome these issues, one should explore the nature of polarization in multi-layered van der Waals stacks, how it is governed by intra- and interlayer charge redistribution and to what extent it survives the addition of mobile charge carriers14. To explore these questions, we conduct surface potential measurements of parallel WSe2 and MoS2 multi-layers with aligned and anti-aligned configurations of the polar interfaces. We find evenly spaced, nearly decoupled potential steps, indicating highly confined interfacial electric fields that provide a means to design multi-state ‘ladder-ferroelectrics’. Furthermore, we find that the internal polarization remains notable on electrostatic doping of mobile charge carrier densities as high as 1013 cm−2, with substantial in-plane conductivity. Using density functional theory calculations, we trace the extra charge redistribution in real and momentum spaces and identify an eventual doping-induced depolarization mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Several polarization states in artificially stacked trilayers.
Fig. 2: Multi-polarization states in naturally grown 3R MoS2.
Fig. 3: Effect of gate bias on the polarization.
Fig. 4: Excess charge distribution calculations for polar bilayers of MoS2 (a,c,e panels) and WSe2 (b,d,f panels).

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article  CAS  Google Scholar 

  2. Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Article  CAS  Google Scholar 

  3. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  ADS  CAS  Google Scholar 

  4. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 142–1466 (2021).

    Article  ADS  Google Scholar 

  5. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article  ADS  CAS  Google Scholar 

  6. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).

    Article  ADS  Google Scholar 

  7. Sharma, P. et al. A room-temperature ferroelectric semimetal. Sci. Adv. 5, eaax5080 (2019).

    Article  ADS  CAS  Google Scholar 

  8. de la Barrera, S. C. et al. Direct measurement of ferroelectric polarization in a tunable semimetal. Nat. Commun. 12, 5298 (2021).

    Article  ADS  Google Scholar 

  9. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article  ADS  CAS  Google Scholar 

  10. Wan, Y. et al. Room-temperature ferroelectricity in 1T′-ReS2 multilayers. Phys. Rev. Lett. 128, 067601 (2022).

    Article  ADS  CAS  Google Scholar 

  11. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article  ADS  CAS  Google Scholar 

  12. Lipatov, A. et al. Direct observation of ferroelectricity in two-dimensional MoS2. NPJ 2D Mater. Appl. 6, 18 (2022).

    Article  CAS  Google Scholar 

  13. Lines, M. & Glass, A. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 2001).

  14. Wu, M. & Li, J. Sliding ferroelectricity in 2D van der Waals materials: related physics and future opportunities. Proc. Natl Acad. Sci. USA 118, e2115703118 (2021).

    Article  Google Scholar 

  15. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  ADS  CAS  Google Scholar 

  16. Setter, N. et al. Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).

  17. Anderson, P. W. & Blount, E. I. Symmetry considerations on martensitic transformations: ‘ferroelectric’ metals? Phys. Rev. Lett. 14, 217–219 (1965).

    Article  ADS  CAS  MATH  Google Scholar 

  18. Xue, F., He, J. H. & Zhang, X. Emerging van der Waals ferroelectrics: unique properties and novel devices. Appl. Phys. Rev. 8, 021316 (2021).

    Article  ADS  CAS  Google Scholar 

  19. Iwazaki, Y., Suzuki, T., Mizuno, Y. & Tsuneyuki, S. Doping-induced phase transitions in ferroelectric BaTiO3 from first-principles calculations. Phys. Rev. B. Condens. Matter Mater. Phys. 86, 214103 (2012).

    Article  ADS  Google Scholar 

  20. Wang, Y., Liu, X., Burton, J. D., Jaswal, S. S. & Tsymbal, E. Y. Ferroelectric instability under screened Coulomb interactions. Phys. Rev. Lett. (2012).

  21. Zhao, H. J. et al. Meta-screening and permanence of polar distortion in metallized ferroelectrics. Phys. Rev. B. 97, 054107 (2018).

    Article  ADS  Google Scholar 

  22. Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013).

    Article  ADS  CAS  Google Scholar 

  23. Zhou, W. X. & Ariando, A. Review on ferroelectric/polar metals. Jpn. J. Appl. Phys. 59, SI0802 (2020).

    Article  CAS  Google Scholar 

  24. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article  ADS  CAS  Google Scholar 

  25. Jia, C. L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64–69 (2007).

    Article  ADS  CAS  Google Scholar 

  26. Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

    Article  ADS  Google Scholar 

  27. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article  ADS  CAS  Google Scholar 

  28. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  ADS  CAS  Google Scholar 

  29. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    Article  ADS  CAS  Google Scholar 

  30. Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 14, 4550–4558 (2020).

    Article  CAS  Google Scholar 

  31. Ferreira, F., Enaldiev, V. V., Fal’ko, V. I. & Magorrian, S. J. Weak ferroelectric charge transfer in layer-asymmetric bilayers of 2D semiconductors. Sci. Rep. 11, 13422 (2021).

    Article  ADS  CAS  Google Scholar 

  32. Magorrian, S. J. et al. Multifaceted moiré superlattice physics in twisted bilayers. Phys. Rev. B. 104, 125440 (2021).

  33. Sinai, O. & Kronik, L. Simulated doping of Si from first principles using pseudoatoms. Phys. Rev. B - Condens. Matter Mater. Phys. 87, 235305 (2013).

    Article  ADS  Google Scholar 

  34. Collins, L., Kilpatrick, J. I., Kalinin, S. V. & Rodriguez, B. J. Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review. Reports Prog. Phys. 81, 086101 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  35. Sung, J. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750–754 (2020).

    Article  ADS  CAS  Google Scholar 

  36. Chen, W. et al. Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366, 983–987 (2019).

    Article  ADS  CAS  Google Scholar 

  37. Vaňo, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021).

    Article  ADS  Google Scholar 

  38. Liu, X., Pyatakov, A. P. & Ren, W. Magnetoelectric coupling in multiferroic bilayer VS2. Phys. Rev. Lett. 125, 247601 (2020).

    Article  ADS  CAS  Google Scholar 

  39. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  Google Scholar 

  40. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  41. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B - Condens. Matter Mater. Phys. 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  42. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantumsimulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Cerreta (Park Systems) for atomic fluorescence microscopy support and N. Ravid for laboratory support. K.W. and T.T. acknowledge support from JSPS KAKENHI (grant nos. 19H05790, 20H00354 and 21H05233). M.G. has been supported by the Israel Science Foundation and the Directorate for Defense Research and Development grant no. 3427/21 and by the US-Israel Binational Science Foundation grant no. 2020072. L.K. thanks the Aryeh and Mintzi Katzman Professorial Chair and the Helen and Martin Kimmel Award for Innovative Investigation. M.U. acknowledges the financial support of the Israel Science Foundation, grant no. 1141/18, and the binational programme of the National Science Foundation of China and Israel Science Foundation, grant no. 3191/19. O.H. is grateful for the generous financial support of the Israel Science Foundation under grant no. 1586/17, The Ministry of Science and Technology of Israel (project no. 3–16244), the Heineman Chair in Physical Chemistry, and the Naomi Foundation for generous financial support from the the 2017 Kadar Award. M.B.S. acknowledges funding by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 852925), and the Israel Science Foundation under grant nos. 1652/18 and 3623/21. O.H. and M.B.S. acknowledge the Centre for Nanoscience and Nanotechnology of Tel Aviv University.

Author information

Authors and Affiliations

Authors

Contributions

S.D. and N.R. conducted the experiments supervised by M.B.S. W.C. conducted the DFT calculations supervised by L.K., M.U. and O.H. K.W. and T.T. provided the h-BN crystals. S.D., W.C., N.R., M.G., L.K., M.U., O.H. and M.B.S. analysed the data, discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Moshe Ben Shalom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Erjun Kan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–10, Table 1 and References.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, S., Cao, W., Raab, N. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022). https://doi.org/10.1038/s41586-022-05341-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05341-5

  • Springer Nature Limited

This article is cited by

Navigation