Skip to main content

Advertisement

Log in

Molecular transport in articular cartilage — what have we learned from the past 50 years?

  • Review Article
  • Published:

From Nature Reviews Rheumatology

View current issue Sign up to alerts

Abstract

Developing therapeutic molecules that target chondrocytes and locally produced inflammatory factors within arthritic cartilage is an active area of investigation. The extensive studies that have been conducted over the past 50 years have enabled the accurate prediction and reliable optimization of the transport of a wide variety of molecules into cartilage. In this Review, the factors that can be used to tune the transport kinetics of therapeutics are summarized. Overall, the most crucial factor when designing new therapeutic molecules is solute size. The diffusivity and partition coefficient of a solute both decrease with increasing solute size as indicated by molecular mass or by hydrodynamic radius. Surprisingly, despite having an effective pore size of ~6 nm, molecules of ~16 nm radius can diffuse through the cartilage matrix. Alteration of the shape or charge of a solute and the application of physiological loading to cartilage can be used to predictably improve solute transport kinetics, and this knowledge can be used to improve the development of therapeutic agents for osteoarthritis that target the cartilage.

Key points

  • Therapeutic agents for arthritis treatment vary widely in their capacity to diffuse through cartilage.

  • Solute size and molecular mass strongly influence the diffusivity of a molecule in cartilage.

  • Linear, flexible solutes (such as dextrans) exhibit fundamentally different transport kinetics compared with those of spherical solutes (such as antibodies).

  • Altering the solute shape or charge and applying physiological loading to cartilage can be used to predictably increase the transport of therapeutics into cartilage.

  • Even molecules that are larger than the effective pore size of cartilage (~6 nm) can diffuse through the entire depth of healthy cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Relative sizes of cartilage-targeted therapeutics and relation to cartilage matrix structure.
Fig. 2: Experimental techniques used to identify the solute diffusivity and partition coefficient.
Fig. 3: Cartilage matrix changes in osteoarthritis affect molecular transport.

Similar content being viewed by others

References

  1. Evans, C. H., Kraus, V. B. & Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 10, 11–22 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Evans, C. H. Drug delivery to chondrocytes. Osteoarthritis Cartilage 24, 1–3 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Bajpayee, A. G. & Grodzinsky, A. J. Cartilage-targeting drug delivery: can electrostatic interactions help? Nat. Rev. Rheumatol. 13, 183–193 (2017).

    Article  PubMed  CAS  Google Scholar 

  4. Moos, V., Fickert, S., Müller, B., Weber, U. & Sieper, J. Immunohistological analysis of cytokine expression in human osteoarthritic and healthy cartilage. J. Rheumatol. 26, 870–879 (1999).

    PubMed  CAS  Google Scholar 

  5. Fernandes, J. C., Martel-Pelletier, J. & Pelletier, J.-P. The role of cytokines in osteoarthritis pathophysiology. Biorheology 39, 237–246 (2002).

    PubMed  CAS  Google Scholar 

  6. Hampel, U. et al. Chemokine and cytokine levels in osteoarthritis and rheumatoid arthritis synovial fluid. J. Immunol. Methods 396, 134–139 (2013).

    Article  PubMed  CAS  Google Scholar 

  7. Feldmann, M., Brennan, F. M. & Maini, R. N. Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 14, 397–440 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. Steiner, G. et al. Cytokine production by synovial T cells in rheumatoid arthritis. Rheumatology 38, 202–213 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. Feldmann, M. & Maini, R. N. Anti -TNFα therapy of rheumatoid arthritis: what have we learned? Annu. Rev. Immunol. 19, 163–196 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. Gerwin, N., Hops, C. & Lucke, A. Intraarticular drug delivery in osteoarthritis. Adv. Drug Deliv. Rev. 58, 226–242 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. McAlindon, T. E. et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage 22, 363–388 (2014).

    Article  PubMed  CAS  Google Scholar 

  13. da Costa, B. R. et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet 390, e21–e33 (2017).

    Article  PubMed  Google Scholar 

  14. McCabe, P. S., Maricar, N., Parkes, M. J., Felson, D. T. & O’Neill, T. W. The efficacy of intra-articular steroids in hip osteoarthritis: a systematic review. Osteoarthritis Cartilage 24, 1509–1517 (2016).

    Article  PubMed  CAS  Google Scholar 

  15. Raynauld, J.-P. et al. Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 48, 370–377 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Garg, N., Perry, L. & Deodhar, A. Intra-articular and soft tissue injections, a systematic review of relative efficacy of various corticosteroids. Clin. Rheumatol. 33, 1695–1706 (2014).

    Article  PubMed  Google Scholar 

  17. Carubbi, F. et al. Safety and efficacy of intra-articular anti-tumor necrosis factor α agents compared to corticosteroids in a treat-to-target strategy in patients with inflammatory arthritis and monoarthritis flare. Int. J. Immunopathol. Pharmacol. 29, 252–266 (2016).

    Article  PubMed  CAS  Google Scholar 

  18. Urech, D. M. et al. Anti-inflammatory and cartilage-protecting effects of an intra-articularly injected anti-TNFα single-chain Fv antibody (ESBA105) designed for local therapeutic use. Ann. Rheum. Dis. 69, 443–449 (2010).

    Article  PubMed  CAS  Google Scholar 

  19. Hunter, D. J. Are there promising biologic therapies for osteoarthritis? Curr. Rheumatol. Rep. 10, 19–25 (2008).

    Article  PubMed  Google Scholar 

  20. Mow, V. C., Holmes, M. H. & Michael Lai, W. Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17, 377–394 (1984).

    Article  PubMed  CAS  Google Scholar 

  21. Poole, A. R. et al. Composition and structure of articular cartilage: a template for tissue repair. Clin. Orthop. Relat. Res. 1, S26–S33 (2001).

    Article  Google Scholar 

  22. Hwang, W. S. et al. Collagen fibril structure of normal, aging, and osteoarthritic cartilage. J. Pathol. 167, 425–433 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. Maroudas, A. Physicochemical properties of cartilage in the light of ion exchange theory. Biophys. J. 8, 575–595 (1968).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Maroudas, A. Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheology 12, 233–248 (1975).

    Article  PubMed  CAS  Google Scholar 

  25. Kim, Y. J., Bonassar, L. J. & Grodzinsky, A. J. The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J. Biomech. 28, 1055–1066 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. Zhu, W., Mow, V. C., Koob, T. J. & Eyre, D. R. Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J. Orthop. Res. 11, 771–781 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. Fortin, M., Soulhat, J., Shirazi-Adl, A., Hunziker, E. B. & Buschmann, M. D. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J. Biomech. Eng. 122, 189–195 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. Albro, M. B. et al. Dynamic loading of immature epiphyseal cartilage pumps nutrients out of vascular canals. J. Biomech. 44, 1654–1659 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sophia Fox, A. J., Bedi, A. & Rodeo, S. A. The basic science of articular cartilage: structure, composition and function. Orthopaedics 1, 461–468 (2009).

    Google Scholar 

  30. Garcia, A. M., Frank, E. H., Grimshaw, P. E. & Grodzinsky, A. J. Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading. Arch. Biochem. Biophys. 333, 317–325 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. Maroudas, A. Distribution and diffusion of solutes in articular cartilage. Biophys. J. 10, 365–379 (1970).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Leddy, H. A. & Guilak, F. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann. Biomed. Eng. 31, 753–760 (2003).

    Article  PubMed  Google Scholar 

  33. Leddy, H. A., Haider, M. A. & Guilak, F. Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching. Biophys. J. 91, 311–316 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Travascio, F. & Gu, W. Y. Simultaneous measurement of anisotropic solute diffusivity and binding reaction rates in biological tissues by FRAP. Ann. Biomed. Eng. 39, 53–65 (2011).

    Article  PubMed  Google Scholar 

  35. Fetter, N. L., Leddy, H. A., Guilak, F. & Nunley, J. A. Composition and transport properties of human ankle and knee cartilage. J. Orthop. Res. 24, 211–219 (2006).

    Article  PubMed  Google Scholar 

  36. Garcia, A. M. et al. Transport and binding of insulin-like growth factor I through articular cartilage. Arch. Biochem. Biophys. 415, 69–79 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. Byun, S. et al. Transport and equilibrium uptake of a peptide inhibitor of PACE4 into articular cartilage is dominated by electrostatic interactions. Arch. Biochem. Biophys. 499, 32–39 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Maroudas, A. Transport of solutes through cartilage: permeability to large molecules. J. Anat. 122, 335–347 (1976).

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Maroudas, A. & Bullough, P. Permeability of articular cartilage. Nature 219, 1260–1261 (1968).

    Article  PubMed  CAS  Google Scholar 

  40. Bajpayee, A. G., Wong, C. R., Bawendi, M. G., Frank, E. H. & Grodzinsky, A. J. Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis. Biomaterials 35, 538–549 (2014).

    Article  PubMed  CAS  Google Scholar 

  41. Nimer, E., Schneiderman, R. & Maroudas, A. Diffusion and partition of solutes in cartilage under static load. Biophys. Chem. 106, 125–146 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. Bonassar, L. J., Grodzinsky, A. J., Srinivasan, A., Davila, S. G. & Trippel, S. B. Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage. Arch. Biochem. Biophys. 379, 57–63 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. Bonassar, L. J. et al. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J. Orthop. Res. 19, 11–17 (2001).

    Article  PubMed  CAS  Google Scholar 

  44. Buschmann, M. D. et al. Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch. Biochem. Biophys. 366, 1–7 (1999).

    Article  PubMed  CAS  Google Scholar 

  45. Allen, K. D., Adams, S. B. & Setton, L. A. Evaluating intra-articular drug delivery for the treatment of osteoarthritis in a rat model. Tissue Eng. Part B. Rev. 16, 81–92 (2010).

    Article  PubMed  CAS  Google Scholar 

  46. Torzilli, P. A., Arduino, J. M., Gregory, J. D. & Bansal, M. Effect of proteoglycan removal on solute mobility in articular cartilage. J. Biomech. 30, 895–902 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. Quinn, T. M., Kocian, P. & Meister, J. J. Static compression is associated with decreased diffusivity of dextrans in cartilage explants. Arch. Biochem. Biophys. 384, 327–334 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. Albro, M. B., Li, R., Banerjee, R. E., Hung, C. T. & Ateshian, G. A. Validation of theoretical framework explaining active solute uptake in dynamically loaded porous media. J. Biomech. 43, 2267–2273 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Quinn, T. M., Morel, V. & Meister, J. J. Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response. J. Biomech. 34, 1463–1469 (2001).

    Article  PubMed  CAS  Google Scholar 

  50. Chin, H. C., Moeini, M. & Quinn, T. M. Solute transport across the articular surface of injured cartilage. Arch. Biochem. Biophys. 535, 241–247 (2013).

    Article  PubMed  CAS  Google Scholar 

  51. Torzilli, P. A., Grande, D. A. & Arduino, J. M. Diffusive properties of immature articular cartilage. J. Biomed. Mater. Res. 40, 132–138 (1998).

    Article  PubMed  CAS  Google Scholar 

  52. Torzilli, P. A., Adams, T. C. & Mis, R. J. Transient solute diffusion in articular cartilage. J. Biomech. 20, 203–214 (1987).

    Article  PubMed  CAS  Google Scholar 

  53. Allhands, R. V., Torzilli, P. A. & Kallfelz, F. A. Measurement of diffusion of uncharged molecules in articular cartilage. Cornell Vet. 74, 111–123 (1984).

    PubMed  CAS  Google Scholar 

  54. Evans, R. C. & Quinn, T. M. Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage. Biophys. J. 91, 1541–1547 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. O’Hara, B. P., Urban, J. P. & Maroudas, A. Influence of cyclic loading on the nutrition of articular cartilage. Ann. Rheum. Dis. 49, 536–539 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kokkonen, H. T., Chin, H. C., Töyräs, J., Jurvelin, J. S. & Quinn, T. M. Solute transport of negatively charged contrast agents across articular surface of injured cartilage. Ann. Biomed. Eng. 45, 973–981 (2017).

    Article  PubMed  CAS  Google Scholar 

  57. Shafieyan, Y., Khosravi, N., Moeini, M. & Quinn, T. M. Diffusion of MRI and CT contrast agents in articular cartilage under static compression. Biophys. J. 107, 485–492 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Decker, S. G. A., Moeini, M., Chin, H. C., Rosenzweig, D. H. & Quinn, T. M. Adsorption and distribution of fluorescent solutes near the articular surface of mechanically injured cartilage. Biophys. J. 105, 2427–2436 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Burstein, D., Gray, M. L., Hartman, A. L., Gipe, R. & Foy, B. D. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J. Orthop. Res. 11, 465–478 (1993).

    Article  PubMed  CAS  Google Scholar 

  60. Yin, Y., Zhao, C., Kuroki, S. & Ando, I. Diffusion of rodlike polypeptides with different main-chain lengths in the thermotropic liquid crystalline state as studied by the field-gradient 1H NMR method. Macromolecules 35, 2335–2338 (2002).

    Article  CAS  Google Scholar 

  61. Foy, B. D. & Blake, J. Diffusion of paramagnetically labeled proteins in cartilage: enhancement of the 1D NMR imaging technique. J. Magn. Reson. 148, 126–134 (2001).

    Article  PubMed  CAS  Google Scholar 

  62. Honkanen, J. T. J. et al. Cationic contrast agent diffusion differs between cartilage and meniscus. Ann. Biomed. Eng. 44, 2913–2921 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kulmala, K. A. M. et al. Diffusion coefficients of articular cartilage for different CT and MRI contrast agents. Med. Eng. Phys. 32, 878–882 (2010).

    Article  PubMed  CAS  Google Scholar 

  64. Silvast, T. S., Jurvelin, J. S., Tiitu, V., Quinn, T. M. & Töyräs, J. Bath concentration of anionic contrast agents does not affect their diffusion and distribution in articular cartilage in vitro. Cartilage 4, 42–51 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Arbabi, V., Pouran, B., Weinans, H. & Zadpoor, A. A. Transport of neutral solute across articular cartilage: the role of zonal diffusivities. J. Biomech. Eng. 137, 71001 (2015).

    Article  Google Scholar 

  66. DiDomenico, C. D., Xiang Wang, Z. & Bonassar, L. J. Cyclic mechanical loading enhances transport of antibodies into articular cartilage. J. Biomech. Eng. 139, 11012 (2016).

    Article  Google Scholar 

  67. DiDomenico, C. D. et al. The effect of antibody size and mechanical loading on solute diffusion through the articular surface of cartilage. J. Biomech. Eng. 139, 91005 (2017).

    Article  Google Scholar 

  68. Ogston, A. G. The spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54, 1754 (1958).

    Article  Google Scholar 

  69. Clague, D. S. & Phillips, R. J. Hindered diffusion of spherical macromolecules through dilute fibrous media. Phys. Fluids 8, 1720–1731 (1996).

    Article  CAS  Google Scholar 

  70. Amsden, B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31, 8382–8395 (1998).

    Article  CAS  Google Scholar 

  71. Renkin, E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38, 225–243 (1954).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Schneiderman, R. et al. Insulin-like growth factor-I and its complexes in normal human articular cartilage: studies of partition and diffusion. Arch. Biochem. Biophys. 324, 159–172 (1995).

    Article  PubMed  CAS  Google Scholar 

  73. Garcia, A. M., Lark, M. W., Trippel, S. B. & Grodzinsky, A. J. Transport of tissue inhibitor of metalloproteinases-1 through cartilage: contributions of fluid flow and electrical migration. J. Orthop. Res. 16, 734–742 (1998).

    Article  PubMed  CAS  Google Scholar 

  74. Ogston, A. G., Preston, B. N. & Wells, J. D. On the transport of compact particles through solutions of chain-polymers. Proc. R. Soc. A Math. Phys. Eng. Sci. 333, 297–316 (1973).

    Article  CAS  Google Scholar 

  75. Ng, L. et al. Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J. Struct. Biol. 143, 242–257 (2003).

    Article  PubMed  CAS  Google Scholar 

  76. Levick, J. R. Flow through interstitium and other fibrous matrices. Q. J. Exp. Physiol. 72, 409–437 (1987).

    Article  PubMed  CAS  Google Scholar 

  77. Stell, G. & Joslin, C. G. The donnan equilibrium: a theoretical study of the effects of interionic forces. Biophys. J. 50, 855–859 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fredrickson, G. H. The theory of polymer dynamics. Curr. Opin. Solid State Mater. Sci. 1, 812–816 (1996).

    Article  CAS  Google Scholar 

  79. de Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579 (1971).

    Article  Google Scholar 

  80. Deen, W. M. Hindered transport of large molecules in liquid-filled pores. AIChE J. 33, 1409–1425 (1987).

    Article  CAS  Google Scholar 

  81. Pluen, A., Netti, P. A., Jain, R. K. & Berk, D. A. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys. J. 77, 542–552 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Deen, W. M., Bohrer, M. P. & Epstein, N. B. Effects of molecular size and configuration on diffusion in microporous membranes. AIChE J. 27, 952–959 (1981).

    Article  CAS  Google Scholar 

  83. Baumgärtner, A. & Muthukumar, M. A trapped polymer chain in random porous media. J. Chem. Phys. 87, 3082 (1987).

    Article  Google Scholar 

  84. Shen, H., Hu, Y. & Saltzman, W. M. DNA diffusion in mucus: effect of size, topology of DNAs, and transfection reagents. Biophys. J. 91, 639–644 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Yamakov, V. & Milchev, A. Diffusion of a polymer chain in porous media. Phys. Rev. E 55, 1704–1712 (1997).

    Article  CAS  Google Scholar 

  86. Pajevic, S., Bansil, R. & Konák, C. Diffusion of linear polymer chains in methyl methacrylate gels. Macromolecules 26, 305–312 (1993).

    Article  Google Scholar 

  87. Doi, M. & Edwards, S. F. in The theory of polymer dynamics (eds Ericksen, J. L., Kinderlehrer, D.) 218–379 (Oxford Univ. Press, 1988).

  88. Tong, J. & Anderson, J. L. Partitioning and diffusion of proteins and linear polymers in polyacrylamide gels. Biophys. J. 70, 1505–1513 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Davidson, M. G., Suter, U. W. & Deen, W. M. Equilibrium partitioning of flexible macromolecules between bulk solution and cylindrical pores. Macromolecules 20, 1141–1146 (1987).

    Article  CAS  Google Scholar 

  90. Truskey, G. A., Yuan, F. & Katz, D. F. Transport phenomena in biological systems (2nd Edition) (Pearson Education, 2009).

  91. Evans, R. C. & Quinn, T. M. Solute diffusivity correlates with mechanical properties and matrix density of compressed articular cartilage. Arch. Biochem. Biophys. 442, 1–10 (2005).

    Article  PubMed  CAS  Google Scholar 

  92. Moeini, M. et al. Decreased solute adsorption onto cracked surfaces of mechanically injured articular cartilage: towards the design of cartilage-specific functional contrast agents. Biochim. Biophys. Acta 1840, 605–614 (2014).

    Article  PubMed  CAS  Google Scholar 

  93. Graham, B. T., Moore, A. C., Burris, D. L. & Price, C. Sliding enhances fluid and solute transport into buried articular cartilage contacts. Osteoarthritis Cartilage 25, 2100–2107 (2017).

    Article  PubMed  CAS  Google Scholar 

  94. Ateshian, G. A. & Weiss, J. A. in Computer Models in Biomechanics (eds Holzapfel, G. A. & Kuhl, E.) 231–249 (Springer, 2013).

  95. Yao, H. & Gu, W. Y. Convection and diffusion in charged hydrated soft tissues: a mixture theory approach. Biomech. Model. Mechanobiol. 6, 63–72 (2007).

    Article  PubMed  CAS  Google Scholar 

  96. Evans, R. C. & Quinn, T. M. Solute convection in dynamically compressed cartilage. J. Biomech. 39, 1048–1055 (2006).

    Article  PubMed  Google Scholar 

  97. Gardiner, B. et al. Solute transport in cartilage undergoing cyclic deformation. Comput. Methods Biomech. Biomed. Engin. 10, 265–278 (2007).

    Article  PubMed  Google Scholar 

  98. Ferguson, S. J., Ito, K. & Nolte, L. P. Fluid flow and convective transport of solutes within the intervertebral disc. J. Biomech. 37, 213–221 (2004).

    Article  PubMed  Google Scholar 

  99. Quinn, T. M., Studer, C., Grodzinsky, A. J. & Meister, J. J. Preservation and analysis of nonequilibrium solute concentration distributions within mechanically compressed cartilage explants. J. Biochem. Biophys. Methods 52, 83–95 (2002).

    Article  PubMed  CAS  Google Scholar 

  100. Zhang, L., Gardiner, B. S., Smith, D. W., Pivonka, P. & Grodzinsky, A. The effect of cyclic deformation and solute binding on solute transport in cartilage. Arch. Biochem. Biophys. 457, 47–56 (2007).

    Article  PubMed  CAS  Google Scholar 

  101. Hung, C. T. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J. Biomech. Eng. 125, 602 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Entezari, V. et al. Effect of mechanical convection on the partitioning of an anionic iodinated contrast agent in intact patellar cartilage. J. Orthop. Res. 32, 1333–1340 (2014).

    Article  PubMed  Google Scholar 

  103. Nia, H. T. et al. High-bandwidth AFM-based rheology reveals that cartilage is most sensitive to high loading rates at early stages of impairment. Biophys. J. 104, 1529–1537 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Eckstein, F., Hudelmaier, M. & Putz, R. The effects of exercise on human articular cartilage. J. Anat. 208, 491–512 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Chevalier, X. et al. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J. Rheumatol. 32, 1317–1323 (2005).

    PubMed  CAS  Google Scholar 

  106. Chevalier, X. et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Care Res. 61, 344–352 (2009).

    Article  CAS  Google Scholar 

  107. Bajpayee, A. G., Scheu, M., Grodzinsky, A. J. & Porter, R. M. A rabbit model demonstrates the influence of cartilage thickness on intra-articular drug delivery and retention within cartilage. J. Orthop. Res. 33, 660–667 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Ghosh, P. & Guidolin, D. Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: are the effects molecular weight dependent? Semin. Arthritis Rheum. 32, 10–37 (2002).

    Article  PubMed  CAS  Google Scholar 

  109. Winalski, C. S. et al. Enhancement of joint fluid with intravenously administered gadopentetate dimeglumine: technique, rationale, and implications. Radiology 187, 179–185 (1993).

    Article  PubMed  CAS  Google Scholar 

  110. Bajpayee, A. G., Quadir, M. A., Hammond, P. T. & Grodzinsky, A. J. Charge based intra-cartilage delivery of single dose dexamethasone using avidin nano-carriers suppresses cytokine-induced catabolism long term. Osteoarthritis Cartilage 24, 71–81 (2016).

    Article  PubMed  CAS  Google Scholar 

  111. Burstein, D. et al. Protocol issues for delayed Gd(DTPA)2—enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn. Reson. Med. 45, 36–41 (2001).

    Article  PubMed  CAS  Google Scholar 

  112. Hawezi, Z. K., Lammentausta, E., Svensson, J., Dahlberg, L. E. & Tiderius, C. J. In vivo transport of Gd-DTPA2- in human knee cartilage assessed by depth-wise dGEMRIC analysis. J. Magn. Reson. Imaging 34, 1352–1358 (2011).

    Article  PubMed  Google Scholar 

  113. Edwards, S. H. R. Intra-articular drug delivery: the challenge to extend drug residence time within the joint. Vet. J. 190, 15–21 (2011).

    Article  PubMed  CAS  Google Scholar 

  114. Chevalier, X., Eymard, F. & Richette, P. Biologic agents in osteoarthritis: hopes and disappointments. Nat. Rev. Rheumatol. 9, 400–410 (2013).

    Article  PubMed  CAS  Google Scholar 

  115. Owen, S., Francis, H. & Roberts, M. Disappearance kinetics of solutes from synovial fluid after intra- articular injection. Br. J. Clin. Pharmacol. 38, 349–355 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Arkill, K. P. & Winlove, C. P. Solute transport in the deep and calcified zones of articular cartilage. Osteoarthritis Cartilage 16, 708–714 (2008).

    Article  PubMed  CAS  Google Scholar 

  117. Pan, J. et al. In situ measurement of transport between subchondral bone and articular cartilage. J. Orthop. Res. 27, 1347–1352 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hughes, C. et al. Human single-chain variable fragment that specifically targets arthritic cartilage. Arthritis Rheum. 62, 1007–1016 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Hughes, C. et al. Targeting of viral interleukin-10 with an antibody fragment specific to damaged arthritic cartilage improves its therapeutic potency. Arthritis Res. Ther. 16, R151 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Champion, J. A., Walker, A. & Mitragotri, S. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res. 25, 1815–1821 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Horisawa, E. et al. Size-dependency of DL-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm. Res. 19, 132–139 (2002).

    Article  PubMed  CAS  Google Scholar 

  122. Palmieri, G. et al. Hyaluronic acid nanoporous microparticles with long in vivo joint residence time and sustained release. Part. Part. Syst. Charact. 34, 1600411 (2017).

    Article  Google Scholar 

  123. Bottini, M. et al. Nanodrugs to target articular cartilage: an emerging platform for osteoarthritis therapy. Nanomedicine 12, 255–268 (2016).

    Article  PubMed  CAS  Google Scholar 

  124. Joshi, N. et al. Towards an arthritis flare-responsive drug delivery system. Nat. Commun. 9, 1275 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Lynch, I. & Dawson, K. A. Protein-nanoparticle interactions. Nano Today 3, 40–47 (2008).

    Article  CAS  Google Scholar 

  126. Poole, C. A. Articular cartilage chondrons: form, function and failure. J. Anat. 191, 1–13 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Alexopoulos, L. G., Haider, M. A., Vail, T. P. & Guilak, F. Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis. J. Biomech. Eng. 125, 323–333 (2003).

    Article  PubMed  Google Scholar 

  128. Leddy, H. A., Christensen, S. E. & Guilak, F. Microscale diffusion properties of the cartilage pericellular matrix measured using 3D scanning microphotolysis. J. Biomech. Eng. 130, 61002 (2008).

    Article  Google Scholar 

  129. Maroudas, A., Bayliss, M. T. & Venn, M. F. Further studies on the composition of human femoral head cartilage. Ann. Rheum. Dis. 39, 514–523 (1980).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Venn, M. & Maroudas, A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann. Rheum. Dis. 36, 121–129 (1977).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Saarakkala, S. et al. Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthritis Cartilage 18, 73–81 (2010).

    Article  PubMed  CAS  Google Scholar 

  132. Manning, H. B. et al. Detection of cartilage matrix degradation by autofluorescence lifetime. Matrix Biol. 32, 32–38 (2013).

    Article  PubMed  CAS  Google Scholar 

  133. Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977–985 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Rothenfluh, D. A., Bermudez, H., O’Neil, C. P. & Hubbell, J. A. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat. Mater. 7, 248–254 (2008).

    Article  PubMed  CAS  Google Scholar 

  135. Pi, Y. et al. Intra-articular delivery of anti-Hif-2α siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice. Gene Ther. 22, 439–448 (2015).

    Article  PubMed  CAS  Google Scholar 

  136. Sacchetti, C. et al. Polyethylene-glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes. ACS Nano 8, 12280–12291 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Pi, Y. et al. Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display. Biomaterials 32, 6324–6332 (2011).

    Article  PubMed  CAS  Google Scholar 

  138. DiDomenico, C. & Bonassar, L. Local solute transport kinetics are strongly correlated to local cartilage composition [abstract]. Trans. Annu. Meet. - Orthop. Res. Soc. 43, a0411 (2018).

    Google Scholar 

Download references

Acknowledgements

The work of the authors was supported by the National Science Foundation (grant NSF-1536463; awarded to L.J.B. and I. Cohen). The authors also thank I. Cohen, L. Bartell, L. Fortier and M. Delco for their help in refining the message of the manuscript.

Referee accreditation statement

Nature Reviews Rheumatology thanks M. Bottini, N. E. Lane and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Review criteria

PubMed served as the primary database to identify all relevant articles using the search terms “articular cartilage” and “solute transport”. All articles that reported solute transport metrics in articular cartilage were included unless the data were collected using diseased or degraded tissue. For all other aspects of this manuscript, the most representative papers were chosen, with a bias towards articles that are recent and clinical.

Author information

Authors and Affiliations

Authors

Contributions

C.D.D. and L.J.B. wrote the article. All authors researched the data for the article, provided substantial contributions to discussions of its content, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Lawrence J. Bonassar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Hydrodynamic radius

A molecular characteristic that quantifies the size of the solute; this characteristic assumes that the solute can be approximated as a sphere, so it might not be appropriate to use for all solutes.

Anisotropic

The state of having properties that depend on direction (for example, parallel versus perpendicular to the articular surface).

Fixed charge density

The concentration of charge that results from the constituent parts of the cartilage matrix, primarily determined by the presence of sulfated glycosaminoglycans.

Poroelastic mechanical response

The time-dependent behaviour of cartilage, which arises from fluid movement through the porous matrix.

Diffusion coefficient

A solute transport metric that quantifies how quickly diffusive transport occurs in a medium; this metric decreases rapidly with increasing solute size and also depends on other factors.

Partition coefficient

A solute transport metric that quantifies the equilibrium concentration of a solute in cartilage compared with the concentration of the solute in synovial fluid; this metric often decreases with increasing solute size.

Cyclical mechanical loading

The mechanical loading of cartilage tissue within the joint, which occurs over a wide range of frequencies and amplitudes, depending on the type of physical activity involved.

Convective transport

Transport of solutes caused by induced fluid flow within cartilage; this type of transport can be caused by mechanical loading of the joint during walking or jumping.

Donnan equilibrium

The unequal distribution of solutes across the cartilage–synovial fluid interface as a result of the high fixed charge density of the tissue, which produces high concentrations of cationic solutes and low concentrations of anionic solutes in cartilage.

Isoelectric point

A molecular characteristic that quantifies the charge of a solute by calculating the pH at which the solute is neutrally charged. Values above 7 denote a positive charge, whereas values below 7 denote a negative charge.

Linear solutes

Solutes with a flexible, chain-like molecular structure that can change shape from an extended linear geometry to a more compact geometry (random coil).

Spherical solutes

Solutes with a generally spherical molecular structure that cannot substantially change their shape.

Peclet number

A solute transport metric that quantifies the relative contributions of convective transport and diffusive transport. Values above 1 indicate that convection is more important than diffusion, whereas values below 1 indicate that diffusion is more important than convection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiDomenico, C.D., Lintz, M. & Bonassar, L.J. Molecular transport in articular cartilage — what have we learned from the past 50 years?. Nat Rev Rheumatol 14, 393–403 (2018). https://doi.org/10.1038/s41584-018-0033-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0033-5

  • Springer Nature Limited

This article is cited by

Navigation