Skip to main content

Advertisement

Log in

Biological insights from the premonitory symptoms of migraine

  • Review Article
  • Published:

From Nature Reviews Neurology

View current issue Sign up to alerts

Abstract

Migraine is a common neurological disorder with a diverse clinical phenotype that comprises more than just head pain. Premonitory (prodromal) symptoms can start hours to days before the onset of a migraine headache and can predict its onset in some individuals. Such symptomatology can include lethargy, yawning, light and sound sensitivity, thirst and cravings. This earliest phase of the migraine attack provides valuable insights into the neurobiology of the disorder, furthering our understanding of how and why these phenotypically heterogeneous symptoms are mediated. Improvements in our understanding of migraine could provide novel therapeutic opportunities, with the possibility of closing the therapeutic gap that remains owing to a lack of sufficiently effective and well-tolerated acute and preventive treatments. Improved understanding of disease mechanisms and potential therapeutic targets through bench-to-bedside research into the premonitory phase is an exciting and emerging means of achieving this aim going forward. In this Review, we discuss the current evidence in the literature in relation to the phenotype and mediation of premonitory symptoms in migraine, and discuss the neurobiological insights gained from these studies.

Key points

  • The premonitory stage of migraine occurs before the onset of migraine headache in adults and children and can predict headache onset.

  • The prevalence of premonitory symptoms is probably underreported owing to a lack of patient and physician recognition and to misinterpretation of the symptoms as migraine triggers.

  • Symptoms that can manifest during the premonitory phase can be broadly grouped as cognitive and mood changes, fatigue and changes in alertness, homeostatic and hormonal changes, and migrainous or sensory sensitivities.

  • Correlation of premonitory symptoms with functional neuroimaging changes during this phase suggests vital involvement of subcortical and cortical areas, namely the hypothalamus, midbrain and limbic areas.

  • Linking the clinical phenotype and neuroanatomy to the neurochemical systems in these brain areas has revealed neurotransmitters and neuropeptides that might mediate premonitory symptoms and contribute to migraine pathophysiology.

  • Further research looking at agents that target the identified receptors could lead to novel targeted treatment options for migraine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: A summary of the timeline of a migraine attack.
Fig. 2: Changes in sensory perception and brain function in one patient with migraine over 30 days.
Fig. 3: The current understanding of the pathophysiology of migraine.

Similar content being viewed by others

References

  1. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 743–800 (2015).

    PubMed Central  Google Scholar 

  2. Airy, H. On a distinct form of transient hemiopsia. Phil. Trans. R. Soc. 160, 247–264 (1870).

    Google Scholar 

  3. Gelfand, A. A. Episodic syndromes that may be associated with migraine: A.K.A. “the childhood periodic syndromes”. Headache 55, 1358–1364 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Gowers, W. R. A Manual of Diseases of the Nervous System 3rd edn (P. Blakiston, Son & Company, 1899).

  5. Maniyar, F. H., Sprenger, T., Monteith, T., Schankin, C. J. & Goadsby, P. J. The premonitory phase of migraine — what can we learn from it? Headache 45, 609–620 (2015). A seminal paper in which the premonitory phase of migraine was imaged with functional neuroimaging for the first time.

    Google Scholar 

  6. Willis, W. D. & Westlund, K. N. Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 14, 2–31 (1997).

    CAS  PubMed  Google Scholar 

  7. Maniyar, F. H., Sprenger, T., Monteith, T., Schankin, C. J. & Goadsby, P. J. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 137, 232–241 (2014).

    PubMed  Google Scholar 

  8. Schulte, L. H. & May, A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 139, 1987–1993 (2016). An important paper in which functional neuroimaging was used to provide insight into temporal changes during the migraine attack, during the interictal, preictal and ictal periods.

    PubMed  Google Scholar 

  9. Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38, 1–211 (2018).

    Google Scholar 

  10. Giffin, N. J. et al. Premonitory symptoms in migraine: an electronic diary study. Neurology 60, 935–940 (2003). An important prospective diary study of premonitory symptoms that revealed which symptoms were most predictive of impending headache and confirmed the reliability of these symptoms and the importance of such diaries in clinical trials.

    CAS  PubMed  Google Scholar 

  11. Giffin, N. J., Lipton, R. B., Silberstein, S. D., Olesen, J. & Goadsby, P. J. The migraine postdrome — an electronic diary study. Neurology 87, 1–5 (2016).

    Google Scholar 

  12. Lindblad, M., Hougaard, A., Amin, F. M. & Ashina, M. Can migraine aura be provoked experimentally? A systematic review of potential methods for the provocation of migraine aura. Cephalalgia 37, 74–88 (2017).

    PubMed  Google Scholar 

  13. Hougaard, A., Amin, F., Hauge, A. W., Ashina, M. & Olesen, J. Provocation of migraine with aura using natural trigger factors. Neurology 80, 428–431 (2013).

    PubMed  Google Scholar 

  14. Schulte, L. H., Jurgens, T. P. & May, A. Photo-, osmo- and phonophobia in the premonitory phase of migraine: mistaking symptoms for triggers? J. Headache Pain 16, 14 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Panconesi, A., Bartolozzi, M. L., Mugnai, S. & Guidi, L. Alcohol as a dietary trigger of primary headaches: what triggering site could be compatible? Neurol. Sci. 33 (Suppl. 1), 203–205 (2012).

    Google Scholar 

  16. Martin, V. T. & Lipton, R. B. Epidemiology and biology of menstrual migraine. Headache 48, 124–130 (2008). (Suppl. 3).

    Google Scholar 

  17. Blau, J. N. Migraine prodromes separated from the aura: complete migraine. BMJ 281, 658–660 (1980).

    CAS  PubMed  Google Scholar 

  18. Drummond, P. D. & Lance, J. W. Neurovascular disturbances in headache patients. Clin. Exp. Neurol. 20, 93–99 (1984).

    CAS  PubMed  Google Scholar 

  19. Waelkens, J. Warning symptoms in migraine: characteristics and therapeutic implications. Cephalalgia 5, 223–228 (1985).

    CAS  PubMed  Google Scholar 

  20. Amery, W. K., Waelkens, J. & Vandenbergh, V. Migraine warnings. Headache 26, 60–66 (1986).

    CAS  PubMed  Google Scholar 

  21. Rasmussen, B. K. & Olesen, J. Migraine with aura and migraine without aura: an epidemiological study. Cephalalgia 12, 221–228 (1992).

    CAS  PubMed  Google Scholar 

  22. Russell, M. B., Rassmussen, B. K., Fenger, K. & Olesen, J. Migraine without aura and migraine with aura are distinct clinical entities: a study of four hundred and eight-four male and female migraineurs from the general population. Cephalalgia 16, 239–245 (1996).

    CAS  PubMed  Google Scholar 

  23. Kelman, L. The premonitory symptoms (prodrome): a tertiary care study of 893 migraineurs. Headache 44, 865–872 (2004).

    PubMed  Google Scholar 

  24. Quintela, E., Castillo, J., Munoz, P. & Pascual, J. Premonitory and resolution symptoms in migraine: a prospective study in 100 unselected patients. Cephalalgia 26, 1051–1060 (2006).

    CAS  PubMed  Google Scholar 

  25. Schoonman, G. G., Evers, D. J., Terwindt, G. M., van Dijk, J. G. & Ferrari, M. D. The prevalence of premonitory symptoms in migraine: a questionnaire study in 461 patients. Cephalalgia 26, 1209–1213 (2006).

    CAS  PubMed  Google Scholar 

  26. Cuvellier, J. C., Mars, A. & Vallee, L. The prevalence of premonitory symptoms in paediatric migraine: a questionnaire study in 103 children and adolescents. Cephalalgia 29, 1197–1201 (2009).

    PubMed  Google Scholar 

  27. Karsan, N., Prabakhar, P. & Goadsby, P. J. Characterising the premonitory stage of migraine in children: a clinic-based study of 100 patients in a Specialist Headache Service. J. Headache Pain 14, 17 (2016). A study confirming that premonitory symptoms occur in young children and have a similar phenotype to those in adults.

    Google Scholar 

  28. Kelman, L. The postdrome of the acute migraine attack. Cephalalgia 26, 214–220 (2006).

    CAS  PubMed  Google Scholar 

  29. Laurell, K. et al. Premonitory symptoms in migraine: a cross-sectional study in 2714 persons. Cephalalgia 36, 951–959 (2016).

    PubMed  Google Scholar 

  30. Karsan, N., Bose, P. & Goadsby, P. J. The phenotype of premonitory symptoms and migraine headache triggered with nitroglycerin. Cephalalgia 36, 53 (2016).

    Google Scholar 

  31. Guo, S., Vollesen, A. L., Olesen, J. & Ashina, M. Premonitory and nonheadache symptoms induced by CGRP and PACAP38 in patients with migraine. Pain 157, 2773–2781 (2016).

    CAS  PubMed  Google Scholar 

  32. Afridi, S. K., Kaube, H. & Goadsby, P. J. Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain 110, 675–680 (2004).

    CAS  PubMed  Google Scholar 

  33. Goadsby, P. J. Bench to bedside advances in the 21st century for primary headache disorders: migraine treatments for migraine patients. Brain 139, 2571–2577 (2016).

    PubMed  Google Scholar 

  34. Akerman, S. & Goadsby, P. J. Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: relevance to migraine. Sci. Transl Med. 7, 308ra157 (2015).

    PubMed  Google Scholar 

  35. Vollesen, A. L. H., Amin, F. M. & Ashina, M. Targeted pituitary adenylate cyclase-activating peptide therapies for migraine. Neurotherapeutics 15, 371–376 (2018).

    CAS  PubMed  Google Scholar 

  36. Hepp, Z., Bloudek, L. M. & Varon, S. F. Systematic review of migraine prophylaxis adherence and persistence. J. Manag. Care Pharm. 20, 22–33 (2014).

    PubMed  Google Scholar 

  37. Luciani, R. et al. Prevention of migraine during prodrome with naratriptan. Cephalalgia 20, 122–126 (2000).

    CAS  PubMed  Google Scholar 

  38. Waelkens, J. Domperidone in the prevention of complete classical migraine. BMJ 284, 944 (1982).

    CAS  PubMed  Google Scholar 

  39. Waelkens, J. Dopamine blockade with domperidone: bridge between prophylactic and abortive treatment of migraine? A dose-finding study. Cephalalgia 4, 85–90 (1984).

    CAS  PubMed  Google Scholar 

  40. Kropp, P. & Gerber, W. D. Prediction of migraine attacks using a slow cortical potential, the contingent negative variation. Neurosci. Lett. 257, 73–76 (1998).

    CAS  PubMed  Google Scholar 

  41. Evers, S., Quibeldey, F., Grotemeyer, K. H., Suhr, B. & Husstedt, I. W. Dynamic changes of cognitive habituation and serotonin metabolism during the migraine interval. Cephalalgia 19, 485–491 (1999).

    CAS  PubMed  Google Scholar 

  42. Judit, A., Sandor, P. S. & Schoenen, J. Habituation of visual and intensity dependence of cortical auditory evoked potentials tend to normalise just before and during migraine attacks. Cephalalgia 20, 714–719 (2000).

    CAS  PubMed  Google Scholar 

  43. Sand, T., Zhitniy, N., White, L. R. & Stovner, L. J. Visual evoked potential latency, amplitude and habituation in migraine: a longitudinal study. Clin. Neurophysiol. 119, 1020–1027 (2008).

    PubMed  Google Scholar 

  44. Porcaro, C. et al. Impaired brainstem and thalamic high-frequency oscillatory EEG activity in migraine between attacks. Cephalalgia 37, 915–926 (2017).

    PubMed  Google Scholar 

  45. Maniyar, F. H., Sprenger, T., Schankin, C. & Goadsby, P. J. The origin of nausea in migraine — a PET study. J. Headache Pain 15, 84 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Stankewitz, A., Aderjan, D., Eippert, F. & May, A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J. Neurosci. 31, 1937–1943 (2011).

    CAS  PubMed  Google Scholar 

  47. Karsan, N., Bose, P., Zelaya, F. O. & Goadsby, P. J. Alterations in regional cerebral blood (rCBF) during the premonitory stage of nitroglycerin (NTG) triggered migraine attacks assessed using arterial spin-labelled (ASL) functional magnetic resonance imaging (fMRI). Cephalalgia 37, 24 (2017).

    Google Scholar 

  48. Cerbo, R. et al. Dopamine hypersensitivity in migraine: role of the apomorphine test. Clin. Neuropharmacol. 20, 36–41 (1997).

    CAS  PubMed  Google Scholar 

  49. Serra, G., Collu, M., Loddo, S., Celasco, G. & Gessa, G. L. Hypophysectomy prevents yawning and penile erection but not hypomotility induced by apomorphine. Pharmacol. Biochem. Behav. 19, 917–919 (1983).

    CAS  PubMed  Google Scholar 

  50. Sanna, F., Succu, S., Melis, M. R. & Argiolas, A. Dopamine agonist-induced penile erection and yawning: differential role of D2-like receptor subtypes and correlation with nitric oxide production in the paraventricular nucleus of the hypothalamus of male rats. Behav. Brain Res. 230, 355–364 (2012).

    CAS  PubMed  Google Scholar 

  51. Barbanti, P. et al. Dopamine and migraine: does Parkinson’s disease modify migraine course? Cephalalgia 20, 720–723 (2000).

    CAS  PubMed  Google Scholar 

  52. Gai, W. P., Geffen, L. B., Denoroy, L. & Blessing, W. W. Loss of C1 and C3 epinephrine-synthesizing neurons in the medulla oblongata in Parkinson’s disease. Ann. Neurol. 33, 357–367 (1993).

    CAS  PubMed  Google Scholar 

  53. Goadsby, P. J. et al. Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev. 97, 553–622 (2017). An important and comprehensive review that outlines the understood neurobiology of migraine on the basis of animal, human and functional imaging studies.

    PubMed  PubMed Central  Google Scholar 

  54. Bergerot, A., Storer, R. J. & Goadsby, P. J. Dopamine inhibits trigeminovascular transmission in the rat. Ann. Neurol. 61, 251–262 (2007).

    CAS  PubMed  Google Scholar 

  55. Skagerberg, G., Bjorklund, A., Lindvall, O. & Schmidt, R. H. Origin and termination of the diencephalo-spinal dopamine system in the rat. Brain Res. Bull. 9, 237–244 (1982).

    CAS  PubMed  Google Scholar 

  56. Charbit, A. R., Akerman, S., Holland, P. R. & Goadsby, P. J. Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohistochemical study. J. Neurosci. 29, 12532–12541 (2009).

    CAS  PubMed  Google Scholar 

  57. Charbit, A. R., Akerman, S. & Goadsby, P. J. Trigeminocervical complex responses after lesioning dopaminergic A11 nucleus are modified by dopamine and serotonin mechanisms. Pain 152, 2365–2376 (2011).

    CAS  PubMed  Google Scholar 

  58. Holland, P. R. Headache and sleep: shared pathophysiological mechanisms. Cephalalgia 34, 725–744 (2014).

    PubMed  Google Scholar 

  59. Benjamin, L. et al. Hypothalamic activation after stimulation of the superior sagittal sinus in the cat: a Fos study. Neurobiol. Dis. 16, 500–505 (2004).

    CAS  PubMed  Google Scholar 

  60. Sakurai, T. Orexins and orexin receptors: implication in feeding behavior. Regul. Pept. 85, 25–30 (1999).

    CAS  PubMed  Google Scholar 

  61. Holland, P. R. & Goadsby, P. J. The hypothalamic orexinergic system: pain and primary headaches. Headache 47, 951–962 (2007).

    PubMed  Google Scholar 

  62. Bartsch, T., Levy, M. J., Knight, Y. E. & Goadsby, P. J. Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain 109, 367–378 (2004).

    CAS  PubMed  Google Scholar 

  63. Holland, P. R., Akerman, S. & Goadsby, P. J. Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. J. Pharmacol. Exp. Ther. 315, 1380–1385 (2005).

    CAS  PubMed  Google Scholar 

  64. Holland, P. R., Akerman, S. & Goadsby, P. J. Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur. J. Neurosci. 24, 2825–2833 (2006).

    CAS  PubMed  Google Scholar 

  65. Sprenger, T. & Goadsby, P. J. What has functional neuroimaging done for primary headache … and for the clinical neurologist? J. Clin. Neurosci. 17, 547–553 (2010).

    PubMed  Google Scholar 

  66. Chabi, A. et al. Randomized controlled trial of the orexin receptor antagonist filorexant for migraine prophylaxis. Cephalalgia 35, 379–388 (2015).

    PubMed  Google Scholar 

  67. Amaral, D. G. & Sinnamon, H. M. The locus coeruleus: neurobiology of a central noradrenergic nucleus. Prog. Neurobiol. 9, 147–196 (1977).

    CAS  PubMed  Google Scholar 

  68. Schwarz, L. A. & Luo, L. Organization of the locus coeruleus-norepinephrine system. Curr. Biol. 25, R1051–R1056 (2015).

    CAS  PubMed  Google Scholar 

  69. Afridi, S. et al. A PET study in spontaneous migraine. Arch. Neurol. 62, 1270–1275 (2005).

    PubMed  Google Scholar 

  70. Weiller, C. et al. Brain stem activation in spontaneous human migraine attacks. Nat. Med. 1, 658–660 (1995).

    CAS  PubMed  Google Scholar 

  71. Vila-Pueyo, M., Goadsby, P. J. & Holland, P. R. Pharmacological manipulation of the LC modulates trigeminovascular nociception [abstract EP-02-048]. Cephalalgia 37, 204–205 (2017).

    Google Scholar 

  72. Vila-Pueyo, M., Strother, L., Goadsby, P. J. & Holland, P. R. The role of the locus coeruleus in regulating trigeminovascular nociception. Cephalalgia 36, 152 (2016).

    Google Scholar 

  73. Bartsch, T. & Goadsby, P. J. Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain 125, 1496–1509 (2002).

    PubMed  Google Scholar 

  74. Bartsch, T. & Goadsby, P. J. Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura mater. Brain 126, 1801–1813 (2003).

    CAS  PubMed  Google Scholar 

  75. Knight, Y. E., Bartsch, T., Kaube, H. & Goadsby, P. J. P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J. Neurosci. 22, RC213 (2002).

    PubMed  Google Scholar 

  76. Goadsby, P. J., Lambert, G. A. & Lance, J. W. Differential effects on the internal and external carotid circulation of the monkey evoked by locus coeruleus stimulation. Brain Res. 249, 247–254 (1982).

    CAS  PubMed  Google Scholar 

  77. Hoskin, K. L., Kaube, H. & Goadsby, P. J. Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c-Fos and electrophysiology study. Brain 119, 249–256 (1996).

    PubMed  Google Scholar 

  78. Goadsby, P. J. & Gundlach, A. L. Localization of [3H]-dihydroergotamine binding sites in the cat central nervous system: relevance to migraine. Ann. Neurol. 29, 91–94 (1991).

    CAS  PubMed  Google Scholar 

  79. Goadsby, P. J. & Knight, Y. E. Inhibition of trigeminal neurons after intravenous administration of naratriptan through an action at the serotonin (5HT1B/1D) receptors. Br. J. Pharmacol. 122, 918–922 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bartsch, T., Knight, Y. E. & Goadsby, P. J. Activation of 5-HT1B/1D receptors in the periaqueductal grey inhibits meningeal nociception. Ann. Neurol. 56, 371–381 (2004).

    CAS  PubMed  Google Scholar 

  81. Storer, R. J., Akerman, S. & Goadsby, P. J. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br. J. Pharmacol. 142, 1171–1181 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pozo-Rosich, P., Storer, R. J., Charbit, A. R. & Goadsby, P. J. Periaqueductal gray calcitonin gene-related peptide modulates trigeminovascular neurons. Cephalalgia 35, 1298–1307 (2015).

    CAS  PubMed  Google Scholar 

  83. Martins Oliveira, M., Akerman, S., Tavares, I. & Goadsby, P. J. Neuropeptide Y inhibits the trigeminovascular pathway through NPY Y1 receptor: implications for migraine. Pain 157, 1666–1673 (2016).

    PubMed  Google Scholar 

  84. Martins-Oliveira, M. et al. Neuroendocrine signaling modulates specific neural networks relevant to migraine. Neurobiol. Dis. 101, 16–26 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Maniyar, F. H., Sprenger, T. & Goadsby, P. J. Photic hypersensitivity in the premonitory phase of migraine — a PET study. Eur. J. Neurol. 21, 1178–1183 (2014).

    CAS  PubMed  Google Scholar 

  86. Andrews, P. L. & Sanger, G. J. Nausea and the quest for the perfect anti-emetic. Eur. J. Pharmacol. 722, 108–121 (2014).

    CAS  PubMed  Google Scholar 

  87. Mason, B. N. et al. Induction of migraine-like photophobic behavior in mice by both peripheral and central CGRP mechanisms. J. Neurosci. 37, 204–216 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Recober, A. et al. Role of calcitonin gene-related peptide in light-aversive behavior: implications for migraine. J. Neurosci. 29, 8798–8804 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Blake, A. D., Badway, A. C. & Strowski, M. Z. Delineating somatostatin’s neuronal actions. Curr. Drug Targets. CNS Neurol. Disord. 3, 153–160 (2004).

    CAS  PubMed  Google Scholar 

  90. Olias, G., Viollet, C., Kusserow, H., Epelbaum, J. & Meyerhof, W. Regulation and function of somatostatin receptors. J. Neurochem. 89, 1057–1091 (2004).

    CAS  PubMed  Google Scholar 

  91. Huang, J. et al. Circuit dissection of the role of somatostatin in itch and pain. Nat. Neurosci. 21, 707–716 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Levy, M., Matharu, M. S., Meeran, K., Powell, M. & Goadsby, P. J. The clinical characteristics of headache in patients with pituitary tumours. Brain 128, 1921–1930 (2005).

    CAS  PubMed  Google Scholar 

  93. Bartsch, T., Levy, M. J., Knight, Y. E. & Goadsby, P. J. Inhibition of nociceptive dural input in the trigeminal nucleus caudalis by somatostatin receptor blockade in the posterior hypothalamus. Pain 117, 30–39 (2005).

    CAS  PubMed  Google Scholar 

  94. Chanson, P., Timsit, J. & Harris, A. G. Clinical pharmacokinetics of octreotide — therapeutic applications in patients with pituitary tumours. Clin. Pharmacokinet. 25, 375–339 (1993).

    CAS  PubMed  Google Scholar 

  95. Kemper, R. H. A., Jeuring, M., Meijler, W. J., Korf, J. & Ter Horst, G. J. Intracisternal octreotide does not ameliorate orthodromic trigeminovascular nociception. Cephalalgia 20, 114–121 (2000).

    CAS  PubMed  Google Scholar 

  96. Levy, M. J., Matharu, M. S., Bhola, R., Meeran, K. & Goadsby, P. J. Octreotide is not effective in the acute treatment of migraine. Cephalalgia 25, 48–55 (2005).

    CAS  PubMed  Google Scholar 

  97. Miller, M. A., Levsky, M. E., Enslow, W. & Rosin, A. Randomized evaluation of octreotide versus prochlorperazine for ED treatment of migraine headache. Am. J. Emerg. Med. 27, 160–164 (2009).

    PubMed  Google Scholar 

  98. McKeage, K. Pasireotide in acromegaly: a review. Drugs 75, 1039–1048 (2015).

    CAS  PubMed  Google Scholar 

  99. Malick, A. & Burstein, R. A neurohistochemical blueprint for pain-induced loss of appetite. Proc. Natl Acad. Sci. USA 98, 9930–9935 (2001).

    CAS  PubMed  Google Scholar 

  100. Weaver, D. R., Stehle, J. H., Stopa, E. G. & Reppert, S. M. Melatonin receptors in human hypothalamus and pituitary: implications for circadian and reproductive responses to melatonin. J. Clin. Endocrinol. Metab. 76, 295–301 (1993).

    CAS  PubMed  Google Scholar 

  101. Wu, Y. H. et al. Alterations of melatonin receptors MT1 and MT2 in the hypothalamic suprachiasmatic nucleus during depression. J. Affect. Disord. 148, 357–367 (2013).

    CAS  PubMed  Google Scholar 

  102. Kelman, L. & Rains, J. C. Headache and sleep: examination of sleep patterns and complaints in a large clinical sample of migraineurs. Headache 45, 904–910 (2005).

    PubMed  Google Scholar 

  103. Ahn, A. H. & Brennan, K. C. Unanswered questions in headache: how does a migraine attack stop? Headache 52, 186–187 (2012).

    PubMed  PubMed Central  Google Scholar 

  104. Alstadhaug, K. B., Odeh, F., Salvesen, R. & Bekkelund, S. I. Prophylaxis of migraine with melatonin: a randomized controlled trial. Neurology 75, 1527–1532 (2010).

    CAS  PubMed  Google Scholar 

  105. Goncalves, A. L. et al. Randomised clinical trial comparing melatonin 3 mg, amitriptyline 25 mg and placebo for migraine prevention. J. Neurol. Neurosurg. Psychiatry 87, 1127–1132 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Ferrari, M. D., Klever, R. R., Terwindt, G. M., Ayata, C. & van den Maagdenberg, A. M. Migraine pathophysiology: lessons from mouse models and human genetics. Lancet Neurol. 14, 65–80 (2015).

    CAS  PubMed  Google Scholar 

  107. Akerman, S., Holland, P. & Goadsby, P. J. Diencephalic and brainstem mechanisms in migraine. Nat. Rev. Neurosci. 12, 570–584 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Association of British Neurologists and Guarantors of Brain for funding N.K., and to thank the Migraine Trust for providing funding and support for studies within the team. No specific funding was granted for this work. The authors’ work is supported by the National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre.

Reviewer information

Nature Reviews Neurology thanks W. Becker, R. Evans and J. Pascual for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

N.K. was responsible for the literature search, design of the manuscript and the main composition of the manuscript. P.J.G. edited the manuscript and provided additional text and citations. Both authors proofread the final manuscript prior to submission.

Corresponding author

Correspondence to Peter J. Goadsby.

Ethics declarations

Competing interests

N.K. has received speaker honoraria from Teva Pharmaceuticals. P.J.G. reports grants and personal fees from Amgen and Eli-Lilly and personal fees from Alder Biopharmaceuticals, Allergan, Autonomic Technologies, Dr Reddy’s Laboratories, Electrocore LLC, eNeura, Novartis, Scion, Teva Pharmaceuticals and Trigemina. He also reports personal fees from Journal Watch, Massachusetts Medical Society, MedicoLegal work, Oxford University Press, Up-to-Date and Wolters Kluwer. He also declares a patent for magnetic stimulation for headache assigned to eNeura without fee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

P3 interval

A neurophysiological event-related potential component that appears at ~300 ms after a specific task is completed and reflects cognitive decision making; also known as the P300 interval.

Cognitive habituation

The progressive decrease of amplitude or frequency of a response to cognitive stimulation that is not related to receptor adaptation or fatigue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karsan, N., Goadsby, P.J. Biological insights from the premonitory symptoms of migraine. Nat Rev Neurol 14, 699–710 (2018). https://doi.org/10.1038/s41582-018-0098-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0098-4

  • Springer Nature Limited

This article is cited by

Navigation