Skip to main content
Log in

New insights into activation and function of the AMPK

  • Review article
  • Published:

From Nature Reviews Molecular Cell Biology

View current issue Sign up to alerts

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The classical role of AMP-activated protein kinase (AMPK) is as a cellular energy sensor activated by falling energy status, signalled by increases in AMP to ATP and ADP to ATP ratios. Once activated, AMPK acts to restore energy homeostasis by promoting ATP-producing catabolic pathways while inhibiting energy-consuming processes. In this Review, we provide an update on this canonical (AMP/ADP-dependent) activation mechanism, but focus mainly on recently described non-canonical pathways, including those by which AMPK senses the availability of glucose, glycogen or fatty acids and by which it senses damage to lysosomes and nuclear DNA. We also discuss new findings on the regulation of carbohydrate and lipid metabolism, mitochondrial and lysosomal homeostasis, and DNA repair. Finally, we discuss the role of AMPK in cancer, obesity, diabetes, nonalcoholic steatohepatitis (NASH) and other disorders where therapeutic targeting may exert beneficial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Domain structure of AMPK and model for canonical activation.
Fig. 2: Location of key phosphorylation sites on AMPK α-subunits and β-subunits.
Fig. 3: Mechanisms of AMPK activation by damage to mitochondria, DNA and lysosomes.
Fig. 4: Canonical and non-canonical mechanisms of AMPK in response to changes in nutrient availability and cell stress.
Fig. 5: Consensus recognition motif for AMPK.
Fig. 6: Maintenance of cellular homeostasis by AMPK via diverse phosphorylations.

Similar content being viewed by others

References

  1. Steinberg, G. R. & Carling, D. AMP-activated protein kinase: the current landscape for drug development. Nat. Rev. Drug Discov. 18, 527–551 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez, A., Hall, M. N., Lin, S. C. & Hardie, D. G. AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control. Cell Metab. 31, 472–492 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Trefts, E. & Shaw, R. J. AMPK: restoring metabolic homeostasis over space and time. Mol. Cell 81, 3677–3690 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin, S. C. & Hardie, D. G. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 27, 299–313 (2017).

    Article  PubMed  Google Scholar 

  5. Ross, F. A., MacKintosh, C. & Hardie, D. G. AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J. 283, 2987–3001 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oakhill, J. S., Scott, J. W. & Kemp, B. E. AMPK functions as an adenylate charge-regulated protein kinase. Trends Endocrinol. Metab. 23, 125–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Pinter, K. et al. Embryonic expression of AMPK gamma subunits and the identification of a novel γ2 transcript variant in adult heart. J. Mol. Cell. Cardiol. 53, 342–349 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, L. et al. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 459, 1146–1149 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Li, X. et al. Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res. 25, 50–66 (2015).

    Article  PubMed  Google Scholar 

  10. Langendorf, C. G. & Kemp, B. E. Choreography of AMPK activation. Cell Res. 25, 5–6 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Ignoul, S. & Eggermont, J. CBS domains: structure, function, and pathology in human proteins. Am. J. Physiol. Cell Physiol. 289, C1369–C1378 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Scott, J. W. et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113, 274–284 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiao, B. et al. Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiao, B. et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Kemp, B. E., Oakhill, J. S. & Scott, J. W. AMPK structure and regulation from three angles. Structure 15, 1161–1163 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Gu, X. et al. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing. J. Biol. Chem. 292, 12653–12666 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yan, Y. et al. Structure of an AMPK complex in an inactive, ATP-bound state. Science 373, 413–419 (2021). This work reports the first structure, achieved using cryo-EM, of an inactive AMPK heterotrimer with an ATP analogue bound at CBS3 and Thr172 in a dephosphorylated state. Comparison with previous crystal structures of active heterotrimers, with AMP at CBS3 and Thr172 phosphorylated, reveals a dramatic conformational change.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sakamoto, K., Goransson, O., Hardie, D. G. & Alessi, D. R. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am. J. Physiol. Endocrinol. Metab. 287, E310–E317 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Li, N. et al. Tankyrase disrupts metabolic homeostasis and promotes tumorigenesis by inhibiting LKB1–AMPK signalling. Nat. Commun. 10, 4363 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Izreig, S. et al. Repression of LKB1 by miR-17-92 sensitizes MYC-dependent lymphoma to biguanide treatment. Cell Rep. Med. 1, 100014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cui, X. et al. miR-106a regulates cell proliferation and autophagy by targeting LKB1 in HPV-16-associated cervical cancer. Mol. Cancer Res. 18, 1129–1141 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Kuwabara, Y. et al. MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway. Circ. Res. 116, 279–288 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Xin, F. J., Wang, J., Zhao, R. Q., Wang, Z. X. & Wu, J. W. Coordinated regulation of AMPK activity by multiple elements in the α-subunit. Cell Res. 23, 1237–1240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hawley, S. A. et al. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem. J. 459, 275–287 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Horman, S. et al. Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase α-subunits in heart via hierarchical phosphorylation of Ser485/491. J. Biol. Chem. 281, 5335–5340 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Hurley, R. L. et al. Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J. Biol. Chem. 281, 36662–36672 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Mao, L. et al. AMPK phosphorylates GBF1 for mitotic Golgi disassembly. J. Cell Sci. 126, 1498–1505 (2013).

    CAS  PubMed  Google Scholar 

  31. Lu, J. et al. AMPKα2 activation by an energy-independent signal ensures chromosomal stability during mitosis. iScience 24, 102363 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stauffer, S. et al. Cyclin-dependent kinase 1-mediated AMPK phosphorylation regulates chromosome alignment and mitotic progression. J. Cell Sci. 132, jcs236000 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suzuki, T. et al. Inhibition of AMPK catabolic action by GSK3. Mol. Cell 50, 407–419 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ling, N. X. Y. et al. mTORC1 directly inhibits AMPK to promote cell proliferation under nutrient stress. Nat. Metab. 2, 41–49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morrison, K. R. et al. An AMPKα2-specific phospho-switch controls lysosomal targeting for activation. Cell Rep. 38, 110365 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Needham, E. J. et al. Personalized phosphoproteomics identifies functional signaling. Nat. Biotechnol. 40, 576–58 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Klepinin, A. et al. Adenylate kinase and metabolic signaling in cancer cells. Front. Oncol. 10, 660 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hardie, D. G. & Hawley, S. A. AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays 23, 1112–1119 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Hawley, S. A. et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 11, 554–565 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hawley, S. A. et al. 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 270, 27186–27191 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Hawley, S. A. et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Woods, A. et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Hurley, R. L. et al. The Ca2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060–29066 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Yang, Y., Atasoy, D., Su, H. H. & Sternson, S. M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992–1003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stahmann, N. et al. Activation of AMP-activated protein kinase by vascular endothelial growth factor mediates endothelial angiogenesis independently of nitric-oxide synthase. J. Biol. Chem. 285, 10638–10652 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reihill, J. A., Ewart, M. A., Hardie, D. G. & Salt, I. P. AMP-activated protein kinase mediates VEGF-stimulated endothelial NO production. Biochem. Biophys. Res. Commun. 354, 1084–1088 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nelson, M. E. et al. Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry. EMBO J. 38, e102578 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chauhan, A. S. et al. STIM2 interacts with AMPK and regulates calcium-induced AMPK activation. FASEB J. 33, 2957–2970 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Hedman, A. C. et al. IQGAP1 binds AMPK and is required for maximum AMPK activation. J. Biol. Chem. 296, 100075 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Tomar, D. et al. Blockade of MCU-mediated Ca2+ uptake perturbs lipid metabolism via PP4-dependent AMPK dephosphorylation. Cell Rep. 26, 3709–3725.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vara-Ciruelos, D. et al. Genotoxic damage activates the AMPK-α1 isoform in the nucleus via Ca2+/CaMKK2 signaling to enhance tumor cell survival. Mol. Cancer Res. 16, 345–357 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Li, S. et al. Ca2+-stimulated AMPK-dependent phosphorylation of Exo1 protects stressed replication forks from aberrant resection. Mol. Cell 74, 1123–1137 (2019). This work demonstrates that agents that damage DNA by distinct mechanisms all activate AMPK in the nucleus by a mechanism involving the Ca2+–CaMKK2 pathway, and also shows that AMPK enhances cell survival during DNA damage via direct phosphorylation within the nucleus of the exonuclease EXO1, which is involved in DNA repair by homologous recombination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sanli, T. et al. Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 78, 221–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Kazgan, N., Williams, T., Forsberg, L. J. & Brenman, J. E. Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase. Mol. Biol. Cell 21, 3433–3442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheratta, A. R. et al. Caspase cleavage and nuclear retention of the energy sensor AMPK-α1 during apoptosis. Cell Rep. 39, 110761 (2022). This work demonstrates that AMPKα1, but not AMPKα2, is cleaved at Asp529 during the early stages of apoptosis triggered by DNA damage. This removes the nuclear export sequence and causes AMPKα1 to be activated by CaMKK2 within the nucleus, where it has roles in DNA repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiang, Y. et al. AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ. Cell Rep. 34, 108713 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, Z. et al. AMPK interactome reveals new function in non-homologous end joining DNA repair. Mol. Cell. Proteom. 19, 467–477 (2020).

    Article  CAS  Google Scholar 

  60. Jiang, Y. et al. Phosphoproteomics reveals AMPK substrate network in response to DNA damage and histone acetylation. Genomics Proteom. Bioinforma. https://doi.org/10.1016/j.gpb.2020.09.003 (2021).

    Article  Google Scholar 

  61. Momcilovic, M., Hong, S. P. & Carlson, M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J. Biol. Chem. 281, 25336–25343 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Herrero-Martin, G. et al. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 28, 677–685 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jia, J. et al. AMPK, a regulator of metabolism and autophagy, is activated by lysosomal damage via a novel galectin-directed ubiquitin signal transduction system. Mol. Cell 77, 951–969 (2020). This work demonstrates a process whereby AMPK senses lysosomal damage, by a mechanism involving detection of glycans from the lysosomal lumen by the cytoplasmic lectin GAL9. The paper also suggests an answer to the long-standing conundrum of why not all cytokines that activate TAK1 also activate AMPK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meley, D. et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281, 34870–34879 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Lippai, M. et al. SNF4Aγ, the Drosophila AMPK γ subunit is required for regulation of developmental and stress-induced autophagy. Autophagy 4, 476–486 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Liang, J. et al. The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 9, 218–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weerasekara, V. K. et al. Metabolic-stress-induced rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1- and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9. Mol. Cell Biol. 34, 4379–4388 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang, D. et al. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy 12, 1447–1459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao, Y. et al. RACK1 promotes autophagy by enhancing the Atg14L–beclin 1–Vps34–Vps15 complex formation upon phosphorylation by AMPK. Cell Rep. 13, 1407–1417 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290–303 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dohmen, M. et al. AMPK-dependent activation of the cyclin Y/CDK16 complex controls autophagy. Nat. Commun. 11, 1032 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Greer, E. L. et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282, 30107–30119 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Shin, H. J. et al. AMPK–SKP2–CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 534, 553–557 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sakamaki, J. I. et al. Bromodomain protein BRD4 is a transcriptional repressor of autophagy and lysosomal function. Mol. Cell 66, 517–532 e519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Young, N. P. et al. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes. Genes Dev. 30, 535–552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Paquette, M. et al. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3. Autophagy 17, 3957–3975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ducommun, S. et al. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell Signal. 27, 978–988 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Toyama, E. Q. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, Z. et al. Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics. Nat. Commun. 10, 104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hung, C. M. et al. AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy. Sci. Adv. 7, eabg4544 (2021). This work establishes a critical link between Parkin and AMPK in mitochondrial quality control. Activation of ULK1 by AMPK leads to phosphorylation of Parkin, triggering its translocation to mitochondria where it may be subsequently activated by PINK1, thus promoting the ubiquitin ligase activity of Parkin and consequent mitophagy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bujak, A. L. et al. AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab. 21, 883–890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mottillo, E. P. et al. Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab. 24, 118–129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Drake, J. C. et al. Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy. Proc. Natl Acad. Sci. USA 118, e2025932118 (2021). This work demonstrates that a mitochondrial pool of AMPK is activated in response to exercise in skeletal muscle, and that this is important for promoting phosphorylation of substrates localized in mitochondria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Leick, L. et al. PGC-1α is required for AICAR-induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 299, E456–E465 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, H. et al. MicroRNA-455 regulates brown adipogenesis via a novel HIF1an–AMPK–PGC1α signaling network. EMBO Rep. 16, 1378–1393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Houde, V. P. et al. AMPK β1 reduces tumor progression and improves survival in p53 null mice. Mol. Oncol. 11, 1143–1155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mitchelhill, K. I. et al. Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J. Biol. Chem. 269, 2361–2364 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Carling, D. et al. Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J. Biol. Chem. 269, 11442–11448 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Celenza, J. L. & Carlson, M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233, 1175–1180 (1986).

    Article  CAS  PubMed  Google Scholar 

  92. Woods, A. et al. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J. Biol. Chem. 269, 19509–19515 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Wilson, W. A., Hawley, S. A. & Hardie, D. G. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6, 1426–1434 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Salt, I. P., Johnson, G., Ashcroft, S. J. H. & Hardie, D. G. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells, and may regulate insulin release. Biochem. J. 335, 533–539 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, C. S. et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112–116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, M. et al. Transient receptor potential V channels are essential for glucose sensing by aldolase and AMPK. Cell Metab. 30, 508–524 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ma, T. et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 603, 159–165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lin, R. et al. 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1–AMPK signalling. Nat. Cell Biol. 17, 1484–1496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gao, X. et al. γ-6-Phosphogluconolactone, a byproduct of the oxidative pentose phosphate pathway, contributes to AMPK activation through inhibition of PP2A. Mol. Cell 76, 857–871 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yan, Y. et al. Phosphatase PHLPP2 regulates the cellular response to metabolic stress through AMPK. Cell Death Dis. 12, 904 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jiang, P. et al. Negative regulation of AMPK signaling by high glucose via E3 ubiquitin ligase MG53. Mol. Cell 81, 629–637 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Liu, Y. et al. A Fbxo48 inhibitor prevents pAMPKα degradation and ameliorates insulin resistance. Nat. Chem. Biol. 17, 298–306 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wojtaszewski, J. F. P., Jørgensen, S. B., Hellsten, Y., Hardie, D. G. & Richter, E. A. Glycogen-dependent effects of AICA riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes 51, 284–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Watt, M. J. et al. β-Adrenergic stimulation of skeletal muscle HSL can be overridden by AMPK signaling. FASEB J. 18, 1445–1446 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Steinberg, G. R. et al. Reduced glycogen availability is associated with increased AMPKα2 activity, nuclear AMPKα2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Appl. Physiol. Nutr. Metab. 31, 302–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Wojtaszewski, J. F. et al. Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am. J. Physiol. 284, E813–E822 (2003).

    CAS  Google Scholar 

  107. Hudson, E. R. et al. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 13, 861–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Polekhina, G. et al. AMPK β subunit targets metabolic stress sensing to glycogen. Curr. Biol. 13, 867–871 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. McBride, A., Ghilagaber, S., Nikolaev, A. & Hardie, D. G. The glycogen-binding domain on the AMPK β subunit allows the kinase to act as a glycogen sensor. Cell Metab. 9, 23–34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Polekhina, G. et al. Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 13, 1453–1462 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Hoffman, N. J. et al. Genetic loss of AMPK–glycogen binding destabilizes AMPK and disrupts metabolism. Mol. Metab. 41, 101048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Janzen, N. R. et al. Mice with whole-body disruption of AMPK–glycogen binding have increased adiposity, reduced fat oxidation and altered tissue glycogen dynamics. Int. J. Mol. Sci. 22, 9616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cool, B. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Myers, R. W. et al. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357, 507–511 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Cokorinos, E. C. et al. Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab. 25, 1147–1159 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Hawley, S. A. et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xiao, B. et al. Structural basis of AMPK regulation by small molecule activators. Nat. Commun. 4, 3017 (2013).

    Article  PubMed  Google Scholar 

  118. Dite, T. A. et al. The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs. Nat. Commun. 8, 571 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Pinkosky, S. L. et al. Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms. Nat. Metab. 2, 873–881 (2020). This work identifies that fatty acyl-CoA esters are natural ligands that activate AMPK by binding to the ADaM site and that this is critical for increasing fatty acid oxidation in response to acute increases in fatty acid availability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Desjardins, E. M., Smith, B. K., Day, E. A., Sakamoto, K. & Steinberg, G. R. The phosphorylation of AMPK-β1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids. Proc. Natl Acad. Sci. USA (in the press).

  121. Schmeisser, S. et al. Muscle-specific lipid hydrolysis prolongs lifespan through global lipidomic remodeling. Cell Rep. 29, 4540–4552.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Sag, D., Carling, D., Stout, R. D. & Suttles, J. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633–8641 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Galic, S. et al. Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J. Clin. Invest. 121, 4903–4915 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Backhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Koh, A. et al. Microbial imidazole propionate affects responses to metformin through p38γ-dependent inhibitory AMPK phosphorylation. Cell Metab. 32, 643–653.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mollica, M. P. et al. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes 66, 1405–1418 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Xu, X. J. et al. Improved insulin sensitivity 3 months after RYGB surgery is associated with increased subcutaneous adipose tissue AMPK activity and decreased oxidative stress. Diabetes 64, 3155–3159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Broadfield, L. A. et al. Metformin-induced reductions in tumor growth involves modulation of the gut microbiome. Mol. Metab. 61, 101498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim, T. T. et al. Fecal transplant from resveratrol-fed donors improves glycaemia and cardiovascular features of the metabolic syndrome in mice. Am. J. Physiol. Endocrinol. Metab. 315, E511–E519 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Weekes, J., Ball, K. L., Caudwell, F. B. & Hardie, D. G. Specificity determinants for the AMP-activated protein kinase and its plant homologue analysed using synthetic peptides. FEBS Lett. 334, 335–339 (1993).

    Article  CAS  PubMed  Google Scholar 

  133. Dale, S., Wilson, W. A., Edelman, A. M. & Hardie, D. G. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 361, 191–195 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Scott, J. W., Norman, D. G., Hawley, S. A., Kontogiannis, L. & Hardie, D. G. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J. Mol. Biol. 317, 309–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Banko, M. R. et al. Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis. Mol. Cell 44, 878–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schaffer, B. E. et al. Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab. 22, 907–921 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Galic, S. et al. AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. eLife 7, e32656 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Loh, K. et al. Inhibition of adenosine monophosphate-activated protein kinase-3-hydroxy-3-methylglutaryl coenzyme A reductase signaling leads to hypercholesterolemia and promotes hepatic steatosis and insulin resistance. Hepatol. Commun. 3, 84–98 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Fullerton, M. D. et al. Single phosphorylation sites in ACC1 and ACC2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lepropre, S. et al. AMPK–ACC signaling modulates platelet phospholipids and potentiates thrombus formation. Blood 132, 1180–1192 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lee, M. et al. Phosphorylation of acetyl-CoA carboxylase by AMPK reduces renal fibrosis and is essential for the anti-fibrotic effect of metformin. J. Am. Soc. Nephrol. 29, 2326–2336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lally, J. S. V. et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 29, 174–182.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. O’Neill, H. M. et al. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia 57, 1693–1702 (2014).

    Article  PubMed  Google Scholar 

  144. O’Neill, H. M. et al. Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise. Physiol. Rep. 3, e12444 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hoffman, N. J. et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 22, 922–935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376–388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Han, Y. et al. Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene. Nat. Commun. 10, 623 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Boudaba, N. et al. AMPK re-activation suppresses hepatic steatosis but its downregulation does not promote fatty liver development. EBioMedicine 28, 194–209 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lee, M. K. S. et al. Defective AMPK regulation of cholesterol metabolism accelerates atherosclerosis by promoting HSPC mobilization and myelopoiesis. Mol. Metab. 61, 101514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hunter, R. W. et al. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat. Med. 24, 1395–1406 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Johanns, M. et al. Inhibition of basal and glucagon-induced hepatic glucose production by 991 and other pharmacological AMPK activators. Biochem. J. 479, 1317–1336 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Jorgensen, S. B. et al. Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J. Biol. Chem. 279, 1070–1079 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Jorgensen, N. O. et al. Direct small molecule ADaM-site AMPK activators reveal an AMPKγ3-independent mechanism for blood glucose lowering. Mol. Metab. 51, 101259 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Rhein, P. et al. Compound- and fiber type-selective requirement of AMPKγ3 for insulin-independent glucose uptake in skeletal muscle. Mol. Metab. 51, 101228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Steinberg, G. R. et al. Whole body deletion of AMP-activated protein kinase β2 reduces muscle AMPK activity and exercise capacity. J. Biol. Chem. 285, 37198–37209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, Q. et al. A Tbc1d1 (Ser231Ala)-knockin mutation partially impairs AICAR- but not exercise-induced muscle glucose uptake in mice. Diabetologia 60, 336–345 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Wu, N. et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol. Cell 49, 1167–1175 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu, Y. et al. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle. Biochem. J. 455, 195–206 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Shrestha, M. M., Lim, C. Y., Bi, X., Robinson, R. C. & Han, W. Tmod3 phosphorylation mediates AMPK-dependent GLUT4 plasma membrane insertion in myoblasts. Front. Endocrinol. 12, 653557 (2021).

    Article  Google Scholar 

  160. Ducommun, S. et al. Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cell Signal. 57, 45–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Johanns, M. et al. Direct and indirect activation of eukaryotic elongation factor 2 kinase by AMP-activated protein kinase. Cell Signal. 36, 212–221 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Adachi, Y. et al. l-Alanine activates hepatic AMP-activated protein kinase and modulates systemic glucose metabolism. Mol. Metab. 17, 61–70 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Deng, L. et al. p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival. Nat. Commun. 11, 1755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lantier, L. et al. Coordinated maintenance of muscle cell size control by AMP-activated protein kinase. FASEB J. 24, 3555–35561 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Theret, M. et al. AMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis. EMBO J. 36, 1946–1962 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lizcano, J. M. et al. LKB1 is a master kinase that activates 13 protein kinases of the AMPK subfamily, including the MARK/PAR-1 kinases. EMBO J. 23, 833–843 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fogarty, S. et al. AMPK causes cell cycle arrest in LKB1-deficient cells via activation of CAMKK2. Mol. Cancer Res. 14, 683–695 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Svensson, R. U. et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108–1119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Schmoll, D. et al. Activation of adenosine monophosphate-activated protein kinase reduces the onset of diet-induced hepatocellular carcinoma in mice. Hepatol. Commun. 4, 1056–1072 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Cha, J. H. et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell 71, 606–620 (2018). This work demonstrates that AMPK inhibits the immune checkpoint PDL1 through direct phosphorylation at two distinct sites and that this is important for enhancing tumour immunogenicity. These findings may have implications in explaining the chemo-preventive effects of metformin and suggest that combining AMPK activators with immunotherapies may promote tumour apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dai, X. et al. Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Mol. Cell 81, 2317–2331 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Faubert, B. et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17, 113–124 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Penfold, L. et al. CAMKK2 promotes prostate cancer independently of AMPK via increased lipogenesis. Cancer Res. 78, 6747–6761 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Vara-Ciruelos, D. et al. Phenformin, but not metformin, delays development of T cell acute lymphoblastic leukemia/lymphoma via cell-autonomous AMPK activation. Cell Rep. 27, 690–698 (2019). This work demonstrates by mouse genetics that the presence of AMPK delays the onset of T-ALL, showing that it can act as a tumour suppressor, and also shows that activation of AMPK using phenformin in the tumour progenitor cells reduces the risk of developing T-ALL in a cell-autonomous manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kishton, R. J. et al. AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival. Cell Metab. 23, 649–662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Eichner, L. J. et al. Genetic analysis reveals AMPK is required to support tumor growth in murine Kras-dependent lung cancer models. Cell Metab. 29, 285–302 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. La Montagna, M. et al. AMPKα loss promotes KRAS-mediated lung tumorigenesis. Cell Death Differ. 28, 2673–2689 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Lee, H. et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol. 22, 225–234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Song, X. et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc activity. Curr. Biol. 28, 2388–2399 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Claret, M. et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J. Clin. Invest. 117, 2325–2336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Dzamko, N. et al. AMPK β1 deletion reduces appetite, preventing obesity and hepatic insulin resistance. J. Biol. Chem. 285, 115–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Milbank, E. et al. Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nat. Metab. 3, 1415–1431 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Minakhina, S., De Oliveira, V., Kim, S. Y., Zheng, H. & Wondisford, F. E. Thyroid hormone receptor phosphorylation regulates acute fasting-induced suppression of the hypothalamic–pituitary–thyroid axis. Proc. Natl Acad. Sci. USA 118, e2107943118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wu, L. et al. AMP-activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front. Physiol. 9, 122 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Pollard, A. E. et al. AMPK activation protects against diet induced obesity through Ucp1-independent thermogenesis in subcutaneous white adipose tissue. Nat. Metab. 1, 340–349 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Winder, W. W. & Hardie, D. G. The AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277, E1–E10 (1999).

    CAS  PubMed  Google Scholar 

  188. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hawley, S. A. et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 65, 2784–2794 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Steneberg, P. et al. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight 3, e99114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Woods, A. et al. Liver-specific activation of AMPK prevents steatosis on a high-fructose diet. Cell Rep. 18, 3043–3051 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Garcia, D. et al. Genetic liver-specific AMPK activation protects against diet-induced obesity and NAFLD. Cell Rep. 26, 192–208.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Esquejo, R. M. et al. Activation of liver AMPK with PF-06409577 corrects NAFLD and lowers cholesterol in rodent and primate preclinical models. EBioMedicine 31, 122–132 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Gluais-Dagorn, P. et al. Direct AMPK activation corrects NASH in rodents through metabolic effects and direct action on inflammation and fibrogenesis. Hepatol. Commun. 6, 101–119 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Ford, R. J. et al. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem. J. 468, 125–132 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Zhang, J. et al. Molecular profiling reveals a common metabolic signature of tissue fibrosis. Cell Rep. Med. 1, 100056 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bates, J. et al. Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. J. Hepatol. 73, 896–905 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Zhao, P. et al. An AMPK–caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science 367, 652–660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cusi, K. et al. Efficacy and safety of PXL770, a direct AMP kinase activator, for the treatment of non-alcoholic fatty liver disease (STAMP-NAFLD): a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Gastroenterol. Hepatol. 6, 889–902 (2021). This work is the first clinical trial testing the effects of a direct allosteric AMPK β1-specific activator in subjects with nonalcoholic fatty liver disease and type 2 diabetes. It shows that, similar to observations in mice, AMPK activation reduces liver de novo lipogenesis, steatosis and insulin resistance.

    Article  PubMed  Google Scholar 

  200. Song, X., Tsakiridis, E., Steinberg, G. R. & Pei, Y. Targeting AMP-activated protein kinase (AMPK) for treatment of autosomal dominant polycystic kidney disease. Cell Signal. 73, 109704 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Banskota, S. et al. Salicylates ameliorate intestinal inflammation by activating macrophage AMPK. Inflamm. Bowel Dis. 27, 914–926 (2021).

    Article  PubMed  Google Scholar 

  202. Dial, A. G., Ng, S. Y., Manta, A. & Ljubicic, V. The role of AMPK in neuromuscular biology and disease. Trends Endocrinol. Metab. 29, 300–312 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Muraleedharan, R. et al. AMPK-regulated astrocytic lactate shuttle plays a non-cell-autonomous role in neuronal survival. Cell Rep. 32, 108092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Monternier, P. A. et al. Beneficial effects of the direct AMP-kinase activator PXL770 in in vitro and in vivo models of X-linked adrenoleukodystrophy. J. Pharmacol. Exp. Ther. 382, 208–222 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Wilson, L. et al. Chronic activation of AMP-activated protein kinase leads to early-onset polycystic kidney phenotype. Clin. Sci. 135, 2393–2408 (2021).

    Article  CAS  Google Scholar 

  206. Zimmermann, H. R. et al. Brain-specific repression of AMPKα1 alleviates pathophysiology in Alzheimer’s model mice. J. Clin. Invest. 130, 3511–3527 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Pinkosky, S. L. et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat. Commun. 7, 13457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ray, K. K. et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N. Engl. J. Med. 380, 1022–1032 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Carlson, C. A. & Kim, K. H. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J. Biol. Chem. 248, 378–380 (1973).

    Article  CAS  PubMed  Google Scholar 

  210. Beg, Z. H., Allmann, D. W. & Gibson, D. M. Modulation of 3-hydroxy-3-methylglutaryl coenzyme: a reductase activity with cAMP and with protein fractions of rat liver cytosol. Biochem. Biophys. Res. Comm. 54, 1362–1369 (1973).

    Article  CAS  PubMed  Google Scholar 

  211. Yeh, L. A., Lee, K. H. & Kim, K. H. Regulation of rat liver acetyl-CoA carboxylase. Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the adenylate energy charge. J. Biol. Chem. 255, 2308–2314 (1980).

    Article  CAS  PubMed  Google Scholar 

  212. Ingebritsen, T. S., Lee, H. S., Parker, R. A. & Gibson, D. M. Reversible modulation of the activities of both liver microsomal hydroxymethylglutaryl coenzyme A reductase and its inactivating enzyme. Evidence for regulation by phosphorylation–dephosphorylation. Biochem. Biophys. Res. Commun. 81, 1268–1277 (1978).

    Article  CAS  PubMed  Google Scholar 

  213. Carling, D., Zammit, V. A. & Hardie, D. G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 223, 217–222 (1987).

    Article  CAS  PubMed  Google Scholar 

  214. Munday, M. R., Campbell, D. G., Carling, D. & Hardie, D. G. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur. J. Biochem. 175, 331–338 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Recent studies in the D.G.H. laboratory have been funded by an Investigator Award from the Welcome Trust (204766/Z/16/Z) and a Programme Grant (C37030/A15101) from Cancer Research UK. G.R.S. is supported by research grants from the Canadian Institutes of Health Research (201709FDN-CEBA-116200), Diabetes Canada (DI-5-17-5302), a Tier 1 Canada Research Chair and a J. Bruce Duncan Endowed Chair in Metabolic Diseases.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Gregory R. Steinberg or D. Grahame Hardie.

Ethics declarations

Competing interests

D.G.H. declares no competing interests. G.R.S. has received research funding from Esperion Therapeutics, Espervita Therapeutics, Poxel Pharmaceuticals, Nestle, Novo Nordisk and Rigel Pharmaceuticals; honoraria and/or consulting fees from AstraZeneca, Cambrian BioPharma, EcoR1 Capital, Eli-Lilly, Esperion Therapeutics, Fibrocor Therapeutics, Pfizer, Poxel Pharmaceuticals and Merck; and is a founder and shareholder of Espervita Therapeutics.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Bruce Kemp and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

WebLogo: weblogo.berkeley.edu

Supplementary information

Glossary

Activation loop

A flexible loop in the carboxy-terminal lobe (C-lobe) of protein kinase domains whose conformation is crucial for substrate binding and catalysis; many protein kinases require phosphorylation within this loop to become active.

Allosteric drug and metabolite (ADaM) site

A ligand-binding site on AMP-activated protein kinase (AMPK), located between the β-carbohydrate-binding module (β-CBM) and the amino-terminal lobe (N-lobe) of the α-kinase domain (α-KD), which binds long-chain fatty acyl-CoA esters and certain pharmacological activators of AMPK.

Calmodulin

A small protein that is a major sensor of intracellular Ca2+, binding of which causes calmodulin to bind to and activate other proteins.

Catalytic module

The portion of the AMP-activated protein kinase (AMPK) heterotrimer containing the α-kinase domain (α-KD) and (at least in some situations) the β-carbohydrate-binding module (β-CBM).

CBS repeats

(Cystathionine-β-synthase repeats). Sequence motifs of ≈60 amino acids first recognized in the enzyme cystathionine β-synthase; they occur as tandem repeats forming pseudo-dimers that bind regulatory ligands, usually containing adenosine.

cis-Autophosphorylation

Protein kinases often phosphorylate themselves (autophosphorylation); it is defined as cis when it is an intramolecular event, occurring within a single molecule of the kinase.

E3 ubiquitin ligases

Enzymes that attach polymerized chains of the protein ubiquitin to another protein, often (but not always) targeting the latter for degradation.

Ferroptosis

A type of programmed cell death that is dependent on iron and characterized by the accumulation of lipid peroxides.

Ghrelin

A hormone released from the gastrointestinal tract (particularly the stomach) under conditions of fasting, which promotes appetite by effects on the hypothalamus in the brain.

Homologous recombination

A DNA repair mechanism in which the sequence affected is copied using the homologous chromosome as a template, which is much more accurate than non-homologous end joining.

Inositol-1,4,5-trisphosphate

(IP3). A soluble second messenger released inside cells in response to many hormones and growth factors, which triggers release of cytosolic Ca2+ by binding to IP3 receptors on the endoplasmic reticulum.

Lysophagy

Autophagic removal of lysosomes that are damaged or surplus to requirements.

Lysosomal v-ATPase

The lysosomal, ATP-driven proton pump that maintains the pH of the lysosomal lumen lower than that of the cytoplasm, allowing lysosomal digestive enzymes with acid pH optima to remain active.

Lysosomotropic agents

Substances that are taken up selectively into lysosomes.

Micro-RNAs

Small single-stranded non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression.

Mitochondrial uncoupling

The respiratory chain pumps protons out across the inner mitochondrial membrane, creating a gradient of protons that drives ATP synthesis as they return across the inner membrane via the ATP synthase complex. Uncoupling, which inhibits ATP synthesis, is the removal of the tight linkage between these processes, for example, by chemicals that transport protons, thus collapsing the proton gradient, independently of the ATP synthase.

Mitophagy

Autophagic removal of damaged mitochondrial segments.

Non-homologous end joining

A DNA repair mechanism in which the broken ends are directly ligated without the need for a homologous template, which is less accurate than homologous recombination.

Nuclear export signals

(NESs). Sequence motifs in a protein that are involved, by binding to exportins involved in nuclear export, in translocation of the protein from the nucleus to the cytoplasm.

Ragulator complex

A complex of 5 proteins (LAMTOR1–5) that are associated with the lysosome and involved with the reciprocal regulation of mTORC1 and AMPK.

Regulatory module

The portion of the AMP-activated protein kinase (AMPK) heterotrimer containing the α-carboxy-terminal domain (α-CTD), the β-C-terminal region (β-CTR) and the entire γ-subunit.

Ribonuclease reductase

The enzyme that converts ribonucleotides to deoxyribonucleotides, which is essential for DNA synthesis and is inhibited by hydroxyurea.

ST loops

Serine/threonine-rich sequences present near the carboxy termini of the α1-subunits and α2-subunits of AMP-activated protein kinase (AMPK) in vertebrates, but not in unicellular eukaryotes; they can be phosphorylated at multiple sites.

Store-operated Ca2+ entry

A mechanism by which depletion of Ca2+ in the endoplasmic reticulum (for example, caused by activation of inositol-1,4,5-trisphosphate (IP3) receptors) triggers opening of Ca2+ channels in the plasma membrane; it involves interactions between the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) and the plasma membrane Ca2+ channel, ORAI1.

Vascular endothelial growth factor

(VEGF). A growth factor released from hypoxic tissues (including tumour tissue) that promotes the growth of new blood vessels (angiogenesis).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinberg, G.R., Hardie, D.G. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol 24, 255–272 (2023). https://doi.org/10.1038/s41580-022-00547-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00547-x

  • Springer Nature Limited

This article is cited by

Navigation