Skip to main content
Log in

Colloidal quantum dot lasers

  • Review Article
  • Published:

From Nature Reviews Materials

View current issue Sign up to alerts

Abstract

Semiconductor nanocrystals represent a promising class of solution-processable optical-gain media that can be manipulated via inexpensive, easily scalable colloidal techniques. Due to their extremely small sizes (typically <10 nm), their properties can be directly controlled via effects of quantum confinement; therefore, they are often termed colloidal quantum dots (CQDs). In addition to size-tunable emission wavelengths, CQDs offer other benefits for lasing applications, including low optical-gain thresholds and high temperature stability of lasing characteristics. Recent progress in understanding and practical control of processes impeding light amplification in CQDs has resulted in several breakthroughs, including the demonstration of optically pumped continuous-wave lasing, the realization of optical gain with direct current electrical injection and the development of dual-function electroluminescent devices that also operate as optically pumped lasers. The purpose of this Review is to assess the status of the field of CQD lasing and discuss the existing challenges and opportunities. A particular focus is on approaches for suppressing nonradiative Auger recombination, novel optical-gain concepts enabled by strong exciton–exciton interactions and controlled CQD charging, effects of nanocrystal form factors on light amplification and practical architectures for realizing electrically pumped CQD lasers. This overview suggests that the accumulated knowledge, along with the approaches developed for manipulating the optical-gain properties of colloidal nanostructures, perfectly position the CQD field for successfully addressing a long-standing challenge: the realization of CQD-based laser diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Quantum dot lasing: from the theoretical concept to the practical demonstration.
Fig. 2: Principles of colloidal quantum dot lasing and manipulation of amplified spontaneous emission/lasing thresholds via shape control and heterostructuring.
Fig. 3: Auger recombination and colloidal quantum dot lasing.
Fig. 4: Auger decay engineering and sub-single-exciton lasing using charged colloidal quantum dots.
Fig. 5: Single-exciton gain using engineered exciton–exciton repulsion.
Fig. 6: Emerging colloidal lasing media.
Fig. 7: Principles of operation of a colloidal quantum dot light-emitting diode and an example of a current-focusing optical-gain device.
Fig. 8: A dual-function colloidal quantum dot light-emitting diode with an integrated distributed feedback cavity.

Similar content being viewed by others

References

  1. Xie, W. et al. On-chip integrated quantum-dot–silicon-nitride microdisk lasers. Adv. Mater. 29, 1604866 (2017).

    Article  CAS  Google Scholar 

  2. Cegielski, P. J. et al. Monolithically integrated perovskite semiconductor lasers on silicon photonic chips by scalable top-down fabrication. Nano Lett. 18, 6915–6923 (2018).

    Article  CAS  Google Scholar 

  3. Kim, J. T. et al. Graphene-based plasmonic waveguide devices for electronic-photonic integrated circuit. Opt. Laser Technol. 106, 76–86 (2018).

    Article  CAS  Google Scholar 

  4. Amemiya, T. et al. Organic membrane photonic integrated circuits (OMPICs). Opt. Express 25, 18537–18552 (2017).

    Article  CAS  Google Scholar 

  5. Jung, H. et al. Efficient on-chip integration of a colloidal quantum dot photonic crystal band-edge laser with a coplanar waveguide. Opt. Express 25, 32919–32930 (2017).

    Article  CAS  Google Scholar 

  6. Clark, J. & Lanzani, G. Organic photonics for communications. Nat. Photonics 4, 438–446 (2010).

    Article  CAS  Google Scholar 

  7. Grivas, C. & Pollnau, M. Organic solid-state integrated amplifiers and lasers. Laser Photonics Rev. 6, 419–462 (2012).

    Article  Google Scholar 

  8. Vannahme, C., Klinkhammer, S., Lemmer, U. & Mappes, T. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Opt. Express 19, 8179–8186 (2011).

    Article  CAS  Google Scholar 

  9. Vannahme, C. et al. Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate. Microelectron. Eng. 87, 693–695 (2010).

    Article  CAS  Google Scholar 

  10. Karl, M. et al. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 9, 1525 (2018).

    Article  CAS  Google Scholar 

  11. Zhang, C. et al. Organic printed photonics: from microring lasers to integrated circuits. Sci. Adv. 1, e1500257 (2015).

    Article  Google Scholar 

  12. Kang, D., Chen, H. & Yoon, J. Stretchable, skin-conformal microscale surface-emitting lasers with dynamically tunable spectral and directional selectivity. Appl. Phys. Lett. 114, 041103 (2019).

    Article  CAS  Google Scholar 

  13. Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5, 591–596 (2008).

    Article  CAS  Google Scholar 

  14. Chandrasekar, R., Lapin, Z., Nichols, A., Braun, R. & Fountain, A. Photonic integrated circuits for Department of Defense-relevant chemical and biological sensing applications: state-of-the-art and future outlooks. Opt. Eng. 58, 020901 (2019).

    Article  CAS  Google Scholar 

  15. Retolaza, A. et al. Organic distributed feedback laser for label-free biosensing of ErbB2 protein biomarker. Sens. Actuators B Chem. 223, 261–265 (2016).

    Article  CAS  Google Scholar 

  16. Chen, Y.-C. & Fan, X. Biological lasers for biomedical applications. Adv. Opt. Mater. 7, 1900377 (2019).

    Article  CAS  Google Scholar 

  17. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  18. Pietryga, J. M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    Article  CAS  Google Scholar 

  19. Kim, J. Y., Voznyy, O., Zhitomirsky, D. & Sargent, E. H. 25th anniversary article: Colloidal quantum dot materials and devices: a quarter-century of advances. Adv. Mater. 25, 4986–5010 (2013).

    Article  CAS  Google Scholar 

  20. Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016).

    Article  CAS  Google Scholar 

  21. Kagan, C. R. Flexible colloidal nanocrystal electronics. Chem. Soc. Rev. 48, 1626–1641 (2019).

    Article  CAS  Google Scholar 

  22. Ekimov, A. I. & Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 34, 345–349 (1981).

    Google Scholar 

  23. Borrelli, N. F., Hall, D. W., Holland, H. J. & Smith, D. W. Quantum confinement effects of semiconducting microcrystallites in glass. J. Appl. Phys. 61, 5399–5409 (1987).

    Article  CAS  Google Scholar 

  24. Vandyshev, Y. V., Dneprovskiǐ, V. S. & Klimov, V. I. Manifestation of dimensional quantization levels in the nonlinear transmission spectra of semiconductor microcrystals. JETP Lett. 53, 314–318 (1991).

    Google Scholar 

  25. Vandyshev, Y., Dneprovskii, V., Klimov, V. & Okorokov, D. Lasing on a transition between quantum-well levels in a quantum dot. JETP Lett. 54, 442–445 (1991).

    Google Scholar 

  26. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  27. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  CAS  Google Scholar 

  28. Hines, M. A. & Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    Article  CAS  Google Scholar 

  29. Kim, S., Fisher, B., Eisler, H.-J. & Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003).

    Article  CAS  Google Scholar 

  30. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  31. Qu, L., Peng, Z. A. & Peng, X. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1, 333–337 (2001).

    Article  CAS  Google Scholar 

  32. Peng, X., Schlamp, M. C., Kadavanich, A. V. & Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997).

    Article  CAS  Google Scholar 

  33. Pietryga, J. M. et al. Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 126, 11752–11753 (2004).

    Article  CAS  Google Scholar 

  34. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  CAS  Google Scholar 

  35. Peng, Z. A. & Peng, X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002).

    Article  CAS  Google Scholar 

  36. Li, L.-s, Walda, J., Manna, L. & Alivisatos, A. P. Semiconductor nanorod liquid crystals. Nano Lett. 2, 557–560 (2002).

    Article  CAS  Google Scholar 

  37. Joo, J., Son, J. S., Kwon, S. G., Yu, J. H. & Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 128, 5632–5633 (2006).

    Article  CAS  Google Scholar 

  38. Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936–941 (2011).

    Article  CAS  Google Scholar 

  39. Ithurria, S. & Talapin, D. V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 134, 18585–18590 (2012).

    Article  CAS  Google Scholar 

  40. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2, 382–385 (2003).

    Article  CAS  Google Scholar 

  41. Enright, M. J. et al. Seeded growth of nanoscale semiconductor tetrapods: generality and the role of cation exchange. Chem. Mater. 32, 4774–4784 (2020).

    Article  CAS  Google Scholar 

  42. Pang, Q. et al. CdSe nano-tetrapods: controllable synthesis, structure analysis, and electronic and optical properties. Chem. Mater. 17, 5263–5267 (2005).

    Article  CAS  Google Scholar 

  43. Kozlov, O. V. et al. Sub–single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity. Science 365, 672–675 (2019).

    Article  CAS  Google Scholar 

  44. Wu, K., Park, Y.-S., Lim, J. & Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).

    Article  CAS  Google Scholar 

  45. Cragg, G. E. & Efros, A. L. Suppression of Auger processes in confined structures. Nano Lett. 10, 313–317 (2010).

    Article  CAS  Google Scholar 

  46. Park, Y.-S., Bae, W. K., Padilha, L. A., Pietryga, J. M. & Klimov, V. I. Effect of the core/shell interface on Auger recombination evaluated by single-quantum-dot spectroscopy. Nano Lett. 14, 396–402 (2014).

    Article  CAS  Google Scholar 

  47. Bae, W. K. et al. Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. ACS Nano 7, 3411–3419 (2013).

    Article  CAS  Google Scholar 

  48. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  CAS  Google Scholar 

  49. Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–48 (2018).

    Article  CAS  Google Scholar 

  50. Roh, J., Park, Y.-S., Lim, J. & Klimov, V. I. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity. Nat. Commun. 11, 271 (2020).

    Article  CAS  Google Scholar 

  51. Wang, Y. & Sun, H. Advances and prospects of lasers developed from colloidal semiconductor nanostructures. Prog. Quantum Electron. 60, 1–29 (2018).

    Article  Google Scholar 

  52. Geiregat, P., Van Thourhout, D. & Hens, Z. A bright future for colloidal quantum dot lasers. NPG Asia Mater. 11, 41 (2019).

    Article  CAS  Google Scholar 

  53. Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

    Article  CAS  Google Scholar 

  54. Erdem, T. & Demir, H. V. Colloidal nanocrystals for quality lighting and displays: milestones and recent developments. Nanophotonics 5, 74–95 (2016).

    Article  Google Scholar 

  55. Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    Article  CAS  Google Scholar 

  56. Efros, A. L. & Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 30, 475–521 (2000).

    Article  CAS  Google Scholar 

  57. Klimov, V. I. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. J. Phys. Chem. B 110, 16827–16845 (2006).

    Article  CAS  Google Scholar 

  58. Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982).

    Article  CAS  Google Scholar 

  59. Asada, M., Miyamoto, Y. & Suematsu, Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron. 22, 1915–1921 (1986).

    Article  Google Scholar 

  60. Bernard, M. G. A. & Duraffourg, G. Laser conditions in semiconductors. Phys. Status Solidi B 1, 699–703 (1961).

    Article  CAS  Google Scholar 

  61. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  CAS  Google Scholar 

  62. Ledentsov, N. N. et al. Optical properties of heterostructures with InGaAs-GaAs quantum clusters. Semiconductors 28, 832–834 (1994).

    Google Scholar 

  63. Kirstaedter, N. et al. Low threshold, large T0 injection laser emission from (InGa)As quantum dots. Electron. Lett. 30, 1416–1417 (1994).

    Article  CAS  Google Scholar 

  64. Grundmann, M. The present status of quantum dot lasers. Phys. E 5, 167–184 (1999).

    Article  CAS  Google Scholar 

  65. Kageyama, T. et al. in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC) (IEEE, 2011).

  66. Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    Article  CAS  Google Scholar 

  67. Park, Y.-S., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–255 (2019).

    Article  CAS  Google Scholar 

  68. Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).

    Article  CAS  Google Scholar 

  69. Jasieniak, J., Smith, L., van Embden, J., Mulvaney, P. & Califano, M. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 113, 19468–19474 (2009).

    Article  CAS  Google Scholar 

  70. García-Santamaría, F. et al. Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009).

    Article  CAS  Google Scholar 

  71. Bisschop, S., Geiregat, P., Aubert, T. & Hens, Z. The impact of core/shell sizes on the optical gain characteristics of CdSe/CdS quantum dots. ACS Nano 12, 9011–9021 (2018).

    Article  CAS  Google Scholar 

  72. Htoon, H., Hollingworth, J. A., Malko, A. V., Dickerson, R. & Klimov, V. I. Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots. Appl. Phys. Lett. 82, 4776–4778 (2003).

    Article  CAS  Google Scholar 

  73. Moreels, I. et al. Nearly temperature-independent threshold for amplified spontaneous emission in colloidal CdSe/CdS quantum dot-in-rods. Adv. Mater. 24, OP231–OP235 (2012).

    Article  CAS  Google Scholar 

  74. Krahne, R., Zavelani-Rossi, M., Lupo, M. G., Manna, L. & Lanzani, G. Amplified spontaneous emission from core and shell transitions in CdSe/CdS nanorods fabricated by seeded growth. Appl. Phys. Lett. 98, 063105 (2011).

    Article  CAS  Google Scholar 

  75. Guzelturk, B., Kelestemur, Y., Olutas, M., Delikanli, S. & Demir, H. V. Amplified spontaneous smission and lasing in colloidal nanoplatelets. ACS Nano 8, 6599–6605 (2014).

    Article  CAS  Google Scholar 

  76. She, C. et al. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 14, 2772–2777 (2014).

    Article  CAS  Google Scholar 

  77. Grim, J. Q. et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotechnol. 9, 891–895 (2014).

    Article  CAS  Google Scholar 

  78. Chhantyal, P. et al. Low threshold room temperature amplified spontaneous emission in 0D, 1D and 2D quantum confined systems. Sci. Rep. 8, 3962 (2018).

    Article  CAS  Google Scholar 

  79. Guzelturk, B. et al. High-efficiency optical gain in type-II semiconductor nanocrystals of alloyed colloidal quantum wells. J. Phys. Chem. Lett. 8, 5317–5324 (2017).

    Article  CAS  Google Scholar 

  80. Altintas, Y. et al. Giant alloyed hot injection shells enable ultralow optical gain threshold in colloidal quantum wells. ACS Nano 13, 10662–10670 (2019).

    Article  CAS  Google Scholar 

  81. Taghipour, N. et al. Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling. Nat. Commun. 11, 3305 (2020).

    Article  CAS  Google Scholar 

  82. Wang, Y., Zhi, M., Chang, Y.-Q., Zhang, J.-P. & Chan, Y. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett. 18, 4976–4984 (2018).

    Article  CAS  Google Scholar 

  83. Tong, Y. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. Int. Ed. 55, 13887–13892 (2016).

    Article  CAS  Google Scholar 

  84. Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).

    Article  CAS  Google Scholar 

  85. Malko, A. V. et al. From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids. Appl. Phys. Lett. 81, 1303–1305 (2002).

    Article  CAS  Google Scholar 

  86. Wang, Y. et al. Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high-Q microlasers. Laser Photonics Rev. 9, 507–516 (2015).

    Article  CAS  Google Scholar 

  87. Guzelturk, B., Kelestemur, Y., Akgul, M. Z., Sharma, V. K. & Demir, H. V. Ultralow threshold one-photon- and two-photon-pumped optical gain media of blue-emitting colloidal quantum dot films. J. Phys. Chem. Lett. 5, 2214–2218 (2014).

    Article  CAS  Google Scholar 

  88. Gao, S. et al. Lasing from colloidal InP/ZnS quantum dots. Opt. Express 19, 5528–5535 (2011).

    Article  CAS  Google Scholar 

  89. Di Stasio, F., Polovitsyn, A., Angeloni, I., Moreels, I. & Krahne, R. Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS “giant-shell” nanocrystals. ACS Photonics 3, 2083–2088 (2016).

    Article  CAS  Google Scholar 

  90. Park, Y.-S., Bae, W. K., Baker, T., Lim, J. & Klimov, V. I. Effect of Auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 15, 7319–7328 (2015).

    Article  CAS  Google Scholar 

  91. Klimov, V. I. et al. Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007).

    Article  CAS  Google Scholar 

  92. Wang, Y. et al. Stimulated emission and lasing from CdSe/CdS/ZnS core-multi-shell quantum dots by simultaneous three-photon absorption. Adv. Mater. 26, 2954–2961 (2014).

    Article  CAS  Google Scholar 

  93. Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 7, 335–339 (2012).

    Article  CAS  Google Scholar 

  94. Robel, I., Gresback, R., Kortshagen, U., Schaller, R. D. & Klimov, V. I. Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys. Rev. Lett. 102, 177404 (2009).

    Article  CAS  Google Scholar 

  95. Wang, L.-W., Califano, M., Zunger, A. & Franceschetti, A. Pseudopotential theory of Auger processes in CdSe quantum dots. Phys. Rev. Lett. 91, 056404 (2003).

    Article  CAS  Google Scholar 

  96. Efros, A. L. & Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 78, 1110–1113 (1997).

    Article  CAS  Google Scholar 

  97. Kharchenko, V. A. & Rosen, M. Auger relaxation processes in semiconductor nanocrystals and quantum wells. J. Lumin. 70, 158–169 (1996).

    Article  CAS  Google Scholar 

  98. Dneprovskii, V. S. et al. Time-resolved luminescence of CdSe microcrystals. Solid State Commun. 74, 555–557 (1990).

    Article  CAS  Google Scholar 

  99. Roussignol, P. et al. Time-resolved direct observation of Auger recombination in semiconductor-doped glasses. Appl. Phys. Lett. 51, 1882–1884 (1987).

    Article  CAS  Google Scholar 

  100. Stewart, J. T. et al. Comparison of carrier multiplication yields in PbS and PbSe nanocrystals: the role of competing energy-loss processes. Nano Lett. 12, 622–628 (2011).

    Article  CAS  Google Scholar 

  101. Klimov, V. I., McGuire, J. A., Schaller, R. D. & Rupasov, V. I. Scaling of multiexciton lifetimes in semiconductor nanocrystals. Phys. Rev. B 77, 195324 (2008).

    Article  CAS  Google Scholar 

  102. She, C. et al. Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets. ACS Nano 9, 9475–9485 (2015).

    Article  CAS  Google Scholar 

  103. Pandey, A. & Guyot-Sionnest, P. Multicarrier recombination in colloidal quantum dots. J. Chem. Phys. 127, 111104 (2007).

    Article  CAS  Google Scholar 

  104. Fisher, B., Caruge, J.-M., Chan, Y.-T., Halpert, J. & Bawendi, M. G. Multiexciton fluorescence from semiconductor nanocrystals. Chem. Phys. 318, 71–81 (2005).

    Article  CAS  Google Scholar 

  105. Achermann, M., Hollingsworth, J. A. & Klimov, V. I. Multiexcitons confined within a subexcitonic volume: spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals. Phys. Rev. B 68, 245302 (2003).

    Article  CAS  Google Scholar 

  106. Makarov, N. S. et al. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots. Nano Lett. 16, 2349–2362 (2016).

    Article  CAS  Google Scholar 

  107. Castañeda, J. A. et al. Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement. ACS Nano 10, 8603–8609 (2016).

    Article  CAS  Google Scholar 

  108. McGuire, J. A., Joo, J., Pietryga, J. M., Schaller, R. D. & Klimov, V. I. New aspects of carrier multiplication in semiconductor nanocrystals. Acc. Chem. Res. 41, 1810–1819 (2008).

    Article  CAS  Google Scholar 

  109. Crooker, S. A., Hollingsworth, J. A., Tretiak, S. & Klimov, V. I. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802 (2002).

    Article  CAS  Google Scholar 

  110. Kazes, M., Lewis, D. Y., Ebenstein, Y., Mokari, T. & Banin, U. Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater. 14, 317–321 (2002).

    Article  CAS  Google Scholar 

  111. Eisler, H.-J. et al. Color-selective semiconductor nanocrystal laser. Appl. Phys. Lett. 80, 4614–4616 (2002).

    Article  CAS  Google Scholar 

  112. Klimov, V. I. & Bawendi, M. G. Ultrafast carrier dynamics, optical amplification, and lasing in nanocrystal quantum dots. MRS Bull. 26, 998–1004 (2001).

    Article  CAS  Google Scholar 

  113. Adachi, M. M. et al. Microsecond-sustained lasing from colloidal quantum dot solids. Nat. Commun. 6, 8694 (2015).

    Article  CAS  Google Scholar 

  114. Park, Y.-S., Lim, J., Makarov, N. S. & Klimov, V. I. Effect of interfacial alloying versus “volume scaling” on Auger recombination in compositionally graded semiconductor quantum dots. Nano Lett. 17, 5607–5613 (2017).

    Article  CAS  Google Scholar 

  115. García-Santamaría, F. et al. Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core–shell interface. Nano Lett. 11, 687–693 (2011).

    Article  CAS  Google Scholar 

  116. Wang, C., Wehrenberg, B. L., Woo, C. Y. & Guyot-Sionnest, P. Light emission and amplification in charged CdSe quantum dots. J. Phys. Chem. B 108, 9027–9031 (2004).

    Article  CAS  Google Scholar 

  117. Haug, A. Influence of doping on threshold current of semiconductor lasers. Electron. Lett. 21, 792–794 (1985).

    Article  CAS  Google Scholar 

  118. Copeland, J. Heavily-doped semiconductor lasers. IEEE J. Quantum Electron. 17, 2187–2190 (1981).

    Article  Google Scholar 

  119. Geuchies, J. et al. Quantitative electrochemical control over optical gain in colloidal quantum-dot and quantum-well solids. Proc. SPIE 11464, 114640R (2020).

    Google Scholar 

  120. Rinehart, J. D., Schimpf, A. M., Weaver, A. L., Cohn, A. W. & Gamelin, D. R. Photochemical electronic doping of colloidal CdSe nanocrystals. J. Am. Chem. Soc. 135, 18782–18785 (2013).

    Article  CAS  Google Scholar 

  121. Ivanov, S. A. et al. Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime. J. Phys. Chem. B 108, 10625–10630 (2004).

    Article  CAS  Google Scholar 

  122. Nanda, J. et al. Light amplification in the single-exciton regime using exciton–exciton repulsion in type-II nanocrystal quantum dots. J. Phys. Chem. C 111, 15382–15390 (2007).

    Article  CAS  Google Scholar 

  123. Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58, 635–673 (2007).

    Article  CAS  Google Scholar 

  124. Piryatinski, A., Ivanov, S. A., Tretiak, S. & Klimov, V. I. Effect of quantum and dielectric confinement on the exciton–exciton interaction energy in type II core/shell semiconductor nanocrystals. Nano Lett. 7, 108–115 (2007).

    Article  CAS  Google Scholar 

  125. Navarro-Arenas, J. et al. Single-exciton amplified spontaneous emission in thin films of CsPbX3 (X=Br, I) perovskite nanocrystals. J. Phys. Chem. Lett. 10, 6389–6398 (2019).

    Article  CAS  Google Scholar 

  126. Ithurria, S. & Dubertret, B. Quasi 2D colloidal CdSe patelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 130, 16504–16505 (2008).

    Article  CAS  Google Scholar 

  127. Talapin, D. V. et al. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7, 2951–2959 (2007).

    Article  CAS  Google Scholar 

  128. Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    Article  CAS  Google Scholar 

  129. Xing, G. et al. Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures. ACS Nano 6, 10835–10844 (2012).

    Article  CAS  Google Scholar 

  130. Di Stasio, F. et al. Single-mode lasing from colloidal water-soluble CdSe/CdS quantum dot-in-rods. Small 11, 1328–1334 (2015).

    Article  CAS  Google Scholar 

  131. Manfredi, G. et al. Lasing from dot-in-rod nanocrystals in planar polymer microcavities. RSC Adv. 8, 13026–13033 (2018).

    Article  CAS  Google Scholar 

  132. Zavelani-Rossi, M., Lupo, M. G., Krahne, R., Manna, L. & Lanzani, G. J. N. Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods. Nanoscale 2, 931–935 (2010).

    Article  CAS  Google Scholar 

  133. Liao, Y., Xing, G., Mishra, N., Sum, T. C. & Chan, Y. Low threshold, amplified spontaneous emission from core-seeded semiconductor nanotetrapods incorporated into a sol–gel matrix. Adv. Mater. 24, OP159–OP164 (2012).

    Article  CAS  Google Scholar 

  134. Shaviv, E., Salant, A. & Banin, U. Size dependence of molar absorption coefficients of CdSe semiconductor quantum rods. Chem. Phys. Chem. 10, 1028–1031 (2009).

    Article  CAS  Google Scholar 

  135. Yeltik, A. et al. Experimental determination of the absorption cross-section and molar extinction coefficient of colloidal CdSe nanoplatelets. J. Phys. Chem. C 119, 26768–26775 (2015).

    Article  CAS  Google Scholar 

  136. Achtstein, A. W. et al. Linear absorption in CdSe nanoplates: thickness and lateral size dependency of the intrinsic absorption. J. Phys. Chem. C 119, 20156–20161 (2015).

    Article  CAS  Google Scholar 

  137. Karel Čapek, R. et al. Optical properties of zincblende cadmium selenide quantum dots. J. Phys. Chem. C 114, 6371–6376 (2010).

    Article  CAS  Google Scholar 

  138. Ithurria, S., Bousquet, G. & Dubertret, B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 133, 3070–3077 (2011).

    Article  CAS  Google Scholar 

  139. Tessier, M. D., Javaux, C., Maksimovic, I., Loriette, V. & Dubertret, B. Spectroscopy of single CdSe nanoplatelets. ACS Nano 6, 6751–6758 (2012).

    Article  CAS  Google Scholar 

  140. Pietryga, J. M., Zhuravlev, K. K., Whitehead, M., Klimov, V. I. & Schaller, R. D. Evidence for barrierless Auger recombination in PbSe nanocrystals: a pressure-dependent study of transient optical absorption. Phys. Rev. Lett. 101, 217401 (2008).

    Article  CAS  Google Scholar 

  141. Htoon, H., Hollingsworth, J. A., Dickerson, R. & Klimov, V. I. Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods. Phys. Rev. Lett. 91, 227401 (2003).

    Article  CAS  Google Scholar 

  142. Rabouw, F. T. et al. Reduced Auger recombination in single CdSe/CdS nanorods by one-dimensional electron delocalization. Nano Lett. 13, 4884–4892 (2013).

    Article  CAS  Google Scholar 

  143. Zavelani-Rossi, M., Lupo, M. G., Tassone, F., Manna, L. & Lanzani, G. Suppression of biexciton Auger recombination in CdSe/CdS dot/rods: role of the electronic structure in the carrier dynamics. Nano Lett. 10, 3142–3150 (2010).

    Article  CAS  Google Scholar 

  144. Gao, Y. et al. Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets. Nanoscale 10, 9466–9475 (2018).

    Article  CAS  Google Scholar 

  145. Kelestemur, Y., Cihan, A. F., Guzelturk, B. & Demir, H. V. Type-tunable amplified spontaneous emission from core-seeded CdSe/CdS nanorods controlled by exciton–exciton interaction. Nanoscale 6, 8509–8514 (2014).

    Article  CAS  Google Scholar 

  146. Li, Q. & Lian, T. A model for optical gain in colloidal nanoplatelets. Chem. Sci. 9, 728–734 (2018).

    Article  CAS  Google Scholar 

  147. Geiregat, P. et al. Thermodynamic equilibrium between excitons and excitonic molecules dictates optical gain in colloidal CdSe quantum wells. J. Phys. Chem. Lett. 10, 3637–3644 (2019).

    Article  CAS  Google Scholar 

  148. Olutas, M. et al. Lateral size-dependent spontaneous and stimulated emission properties in colloidal CdSe nanoplatelets. ACS Nano 9, 5041–5050 (2015).

    Article  CAS  Google Scholar 

  149. Tomar, R. et al. Charge carrier cooling bottleneck opens up nonexcitonic gain mechanisms in colloidal CdSe quantum wells. J. Phys. Chem. C 123, 9640–9650 (2019).

    Article  CAS  Google Scholar 

  150. Homburg, O. et al. Biexcitonic gain characteristics in ZnSe-based lasers with binary wells. Phys. Rev. B 60, 5743–5750 (1999).

    Article  CAS  Google Scholar 

  151. Logue, F. et al. Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells. J. Opt. Soc. Am. B 15, 1295–1304 (1998).

    Article  CAS  Google Scholar 

  152. Ding, J. et al. Excitonic gain and laser emission in ZnSe-based quantum wells. Phys. Rev. Lett. 69, 1707–1710 (1992).

    Article  CAS  Google Scholar 

  153. Diroll, B. T., Kirschner, M. S., Guo, P. & Schaller, R. D. Optical and physical probing of thermal processes in semiconductor and plasmonic nanocrystals. Annu. Rev. Phys. Chem. 70, 353–377 (2019).

    Article  CAS  Google Scholar 

  154. Achermann, M., Bartko, A. P., Hollingsworth, J. A. & Klimov, V. I. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods. Nat. Phys. 2, 557–561 (2006).

    Article  CAS  Google Scholar 

  155. Schmitt-Rink, S., Chemla, D. S. & Miller, D. A. B. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 32, 6601–6609 (1985).

    Article  CAS  Google Scholar 

  156. Guzelturk, B., Pelton, M., Olutas, M. & Demir, H. V. Giant modal gain coefficients in colloidal II–VI nanoplatelets. Nano Lett. 19, 277–282 (2019).

    Article  CAS  Google Scholar 

  157. Sichert, J. A. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 15, 6521–6527 (2015).

    Article  CAS  Google Scholar 

  158. Ishihara, T., Takahashi, J. & Goto, T. Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun. 69, 933–936 (1989).

    Article  CAS  Google Scholar 

  159. Aneesh, J. et al. Ultrafast exciton dynamics in colloidal CsPbBr3 perovskite nanocrystals: biexciton effect and Auger recombination. J. Phys. Chem. C 121, 4734–4739 (2017).

    Article  CAS  Google Scholar 

  160. Ahumada-Lazo, R. et al. Emission properties and ultrafast carrier dynamics of CsPbCl3 perovskite nanocrystals. J. Phys. Chem. C 123, 2651–2657 (2019).

    Article  CAS  Google Scholar 

  161. Eperon, G. E., Jedlicka, E. & Ginger, D. S. Biexciton Auger recombination differs in hybrid and inorganic halide perovskite quantum dots. J. Phys. Chem. Lett. 9, 104–109 (2018).

    Article  CAS  Google Scholar 

  162. Zhao, W. et al. Optical gain from biexcitons in CsPbBr3 nanocrystals revealed by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 10, 1251–1258 (2019).

    Article  CAS  Google Scholar 

  163. Wang, Y. et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater. 27, 7101–7108 (2015).

    Article  CAS  Google Scholar 

  164. Huang, C.-Y. et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics 4, 2281–2289 (2017).

    Article  CAS  Google Scholar 

  165. Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).

    Article  CAS  Google Scholar 

  166. Kallinger, C. et al. A flexible conjugated polymer laser. Adv. Mater. 10, 920–923 (1998).

    Article  CAS  Google Scholar 

  167. Zhai, T., Zhang, X. & Pang, Z. Polymer laser based on active waveguide grating structures. Opt. Express 19, 6487–6492 (2011).

    Article  CAS  Google Scholar 

  168. Huang, C., Zhang, X., Wang, J. & Hong, C. Toward electrically pumped polymer lasing: light-emitting diodes based on microcavity arrays of distributed Bragg gratings. Adv. Opt. Mater. 6, 1800806 (2018).

    Article  CAS  Google Scholar 

  169. Kozlov, V. G., Bulović, V., Burrows, P. E. & Forrest, S. R. Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362–364 (1997).

    Article  CAS  Google Scholar 

  170. Akselrod, G. M. et al. Reduced lasing threshold from organic dye microcavities. Phys. Rev. B 90, 035209 (2014).

    Article  CAS  Google Scholar 

  171. Sandanayaka, A. S. D. et al. Toward continuous-wave operation of organic semiconductor lasers. Sci. Adv. 3, e1602570 (2017).

    Article  CAS  Google Scholar 

  172. Wu, J.-J., Wang, X.-D. & Liao, L.-S. Near-infrared solid-state lasers based on small organic molecules. ACS Photonics 6, 2590–2599 (2019).

    Article  CAS  Google Scholar 

  173. Sandanayaka, A. S. D. et al. Indication of current-injection lasing from an organic semiconductor. Appl. Phys. Express 12, 061010 (2019).

    Article  CAS  Google Scholar 

  174. Sharping, J. E., Kumar, P., Arnold, M. S., Hersam, M. C. & Stupp, S. I. Stimulated emission in single-walled carbon nanotubes. Front. Opt. https://doi.org/10.1364/FIO.2003.MT10 (2003).

  175. Gaufrès, E. et al. Optical gain in carbon nanotubes. Appl. Phys. Lett. 96, 231105 (2010).

    Article  CAS  Google Scholar 

  176. Graf, A. et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nat. Mater. 16, 911–917 (2017).

    Article  CAS  Google Scholar 

  177. Jia, Y. et al. Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett. 16, 4624–4629 (2016).

    Article  CAS  Google Scholar 

  178. Jia, Y., Kerner, R. A., Grede, A. J., Rand, B. P. & Giebink, N. C. Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat. Photonics 11, 784–788 (2017).

    Article  CAS  Google Scholar 

  179. Booker, E. P. et al. Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites. Adv. Opt. Mater. 6, 1800616 (2018).

    Article  CAS  Google Scholar 

  180. Wang, Y.-C. et al. Flexible organometal–halide perovskite lasers for speckle reduction in imaging projection. ACS Nano 13, 5421–5429 (2019).

    Article  CAS  Google Scholar 

  181. Zhao, J. et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett. 6, 463–467 (2006).

    Article  CAS  Google Scholar 

  182. Bae, W. K. et al. Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. Nano Lett. 10, 2368–2373 (2010).

    Article  CAS  Google Scholar 

  183. Schäfer, F., Reithmaier, J. P. & Forchel, A. High-performance GaInAs/GaAs quantum-dot lasers based on a single active layer. Appl. Phys. Lett. 74, 2915–2917 (1999).

    Article  Google Scholar 

  184. Chung, T., Walter, G. & Holonyak, N. Coupled strained-layer InGaAs quantum-well improvement of an InAs quantum dot AlGaAs–GaAs–InGaAs–InAs heterostructure laser. Appl. Phys. Lett. 79, 4500–4502 (2001).

    Article  CAS  Google Scholar 

  185. Huang, Z., Zimmer, M., Hepp, S., Jetter, M. & Michler, P. Optical gain and lasing properties of InP/AlGaInP quantum-dot laser diode emitting at 660 nm. IEEE J. Quantum Electron. 55, 2000307 (2019).

    Article  CAS  Google Scholar 

  186. Ledentsov, N. N. et al. Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. Phys. Rev. B 54, 8743–8750 (1996).

    Article  CAS  Google Scholar 

  187. Sun, Y. et al. Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 13, 11433–11442 (2019).

    Article  CAS  Google Scholar 

  188. Moon, H., Lee, C., Lee, W., Kim, J. & Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 31, 1804294 (2019).

    Article  CAS  Google Scholar 

  189. Yoshida, K. et al. Joule heat-induced breakdown of organic thin-film devices under pulse operation. J. Appl. Phys. 121, 195503 (2017).

    Article  CAS  Google Scholar 

  190. Harvey, S. M. et al. Auger heating and thermal dissipation in zero-dimensional CdSe nanocrystals examined using femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 9, 4481–4487 (2018).

    Article  CAS  Google Scholar 

  191. Kwak, J. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 12, 2362–2366 (2012).

    Article  CAS  Google Scholar 

  192. Lim, J. et al. Influence of shell thickness on the performance of light-emitting devices based on CdSe/Zn1-XCdXS core/shell heterostructured quantum dots. Adv. Mater. 26, 8034–8040 (2014).

    Article  CAS  Google Scholar 

  193. Li, X. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photonics 12, 159–164 (2018).

    Article  CAS  Google Scholar 

  194. Lim, J., Park, Y.-S., Wu, K., Yun, H. J. & Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18, 6645–6653 (2018).

    Article  CAS  Google Scholar 

  195. Mashford, B. S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 7, 407–412 (2013).

    Article  CAS  Google Scholar 

  196. Fu, Y., Jiang, W., Kim, D., Lee, W. & Chae, H. Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers. ACS Appl. Mater. Interfaces 10, 17295–17300 (2018).

    Article  CAS  Google Scholar 

  197. Cao, F. et al. High-efficiency, solution-processed white quantum dot light-emitting diodes with serially tacked red/green/blue units. Adv. Opt. Mater. 6, 1800652 (2018).

    Article  CAS  Google Scholar 

  198. Yang, Z. et al. All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime. Mater. Horiz. 6, 2009–2015 (2019).

    Article  CAS  Google Scholar 

  199. Bae, W. K. et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 3661 (2013).

    Article  Google Scholar 

  200. Pelton, M., Ithurria, S., Schaller, R. D., Dolzhnikov, D. S. & Talapin, D. V. Carrier cooling in colloidal quantum wells. Nano Lett. 12, 6158–6163 (2012).

    Article  CAS  Google Scholar 

  201. Shahnawaz et al. Hole-transporting materials for organic light-emitting diodes: an overview. J. Mater. Chem. C 7, 7144–7158 (2019).

    Article  CAS  Google Scholar 

  202. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  CAS  Google Scholar 

  203. Yun, J. et al. Controlling charge balance using non-conjugated polymer interlayer in quantum dot light-emitting diodes. Org. Electron. 50, 82–86 (2017).

    Article  CAS  Google Scholar 

  204. Pan, J. et al. Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment. Nanoscale 10, 592–602 (2018).

    Article  CAS  Google Scholar 

  205. Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 13, 192–197 (2019).

    Article  CAS  Google Scholar 

  206. Yoshida, K., Nakanotani, H. & Adachi, C. Effect of Joule heating on transient current and electroluminescence in pin organic light-emitting diodes under pulsed voltage operation. Org. Electron. 31, 287–294 (2016).

    Article  CAS  Google Scholar 

  207. Hayashi, K. et al. Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Appl. Phys. Lett. 106, 093301 (2015).

    Article  CAS  Google Scholar 

  208. Sawabe, K. et al. High current densities in a highly photoluminescent organic single-crystal light-emitting transistor. Appl. Phys. Lett. 97, 043307 (2010).

    Article  CAS  Google Scholar 

  209. Yamamoto, H., Kasajima, H., Yokoyama, W., Sasabe, H. & Adachi, C. Extremely-high-density carrier injection and transport over 12000 A/cm2 into organic thin films. Appl. Phys. Lett. 86, 083502 (2005).

    Article  CAS  Google Scholar 

  210. Boroumand, F. A., Hammiche, A., Hill, G. & Lidzey, D. G. Characterizing joule heating in polymer light-emitting diodes using a scanning thermal microscope. Adv. Mater. 16, 252–256 (2004).

    Article  CAS  Google Scholar 

  211. Montanarella, F. et al. Lasing supraparticles self-assembled from nanocrystals. ACS Nano 12, 12788–12794 (2018).

    Article  CAS  Google Scholar 

  212. le Feber, B., Prins, F., De Leo, E., Rabouw, F. T. & Norris, D. J. Colloidal-quantum-dot ring lasers with active color control. Nano Lett. 18, 1028–1034 (2018).

    Article  CAS  Google Scholar 

  213. Wallikewitz, B. H., de la Rosa, M., Kremer, J. H. W. M., Hertel, D. & Meerholz, K. A lasing organic light-emitting diode. Adv. Mater. 22, 531–534 (2010).

    Article  CAS  Google Scholar 

  214. Kim, H. et al. Optically pumped lasing from hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 8, 1901297 (2020).

    Article  CAS  Google Scholar 

  215. Gwinner, M. C. et al. Integration of a rib waveguide distributed feedback structure into a light-emitting polymer field-effect transistor. Adv. Funct. Mater. 19, 1360–1370 (2009).

    Article  CAS  Google Scholar 

  216. Qin, W., Liu, H. & Guyot-Sionnest, P. Small bright charged colloidal quantum dots. ACS Nano 8, 283–291 (2013).

    Article  CAS  Google Scholar 

  217. Murray, C. B. et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47–56 (2001).

    Article  CAS  Google Scholar 

  218. Carey, G. H. et al. Colloidal quantum dot solar cells. Chem. Rev. 115, 12732–12763 (2015).

    Article  CAS  Google Scholar 

  219. Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

    Article  CAS  Google Scholar 

  220. Yu, W. W., Falkner, J. C., Shih, B. S. & Colvin, V. L. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16, 3318–3322 (2004).

    Article  CAS  Google Scholar 

  221. Pietryga, J. M. et al. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J. Am. Chem. Soc. 130, 4879–4885 (2008).

    Article  CAS  Google Scholar 

  222. Du, H. et al. Optical properties of colloidal PbSe nanocrystals. Nano Lett. 2, 1321–1324 (2002).

    Article  CAS  Google Scholar 

  223. Schaller, R. D., Petruska, M. A. & Klimov, V. I. Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals. J. Phys. Chem. B 107, 13765–13768 (2003).

    Article  CAS  Google Scholar 

  224. Christodoulou, S. et al. Single-exciton gain and stimulated emission across the infrared telecom band from robust heavily doped PbS colloidal quantum dots. Nano Lett. 20, 5909–5915 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.-S.P., J.R. and V.I.K. were supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory under project 20200213DR. J.R. was supported by the National Research Foundation of Korea (NRF), the Korea government (MSIT), grant No. 2020R1C1C1013079. B.T.D. and R.D.S. were supported by the U.S. Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Contributions

V.I.K. conceived the idea of the Review and developed its outline. All authors contributed to the writing and editing of the Review.

Corresponding author

Correspondence to Victor I. Klimov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, YS., Roh, J., Diroll, B.T. et al. Colloidal quantum dot lasers. Nat Rev Mater 6, 382–401 (2021). https://doi.org/10.1038/s41578-020-00274-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-00274-9

  • Springer Nature Limited

This article is cited by

Navigation