Skip to main content

Advertisement

Log in

Insights into non-classic and emerging causes of hypopituitarism

  • Review Article
  • Published:

From Nature Reviews Endocrinology

View current issue Sign up to alerts

Abstract

Hypopituitarism is defined as one or more partial or complete pituitary hormone deficiencies, which are related to the anterior and/or posterior gland and can have an onset in childhood or adulthood. The most common aetiology is a sellar or suprasellar lesion, often an adenoma, which causes hypopituitarism due to tumour mass effects, or the effects of surgery and/or radiation therapy. However, other clinical conditions, such as traumatic brain injury, and autoimmune and inflammatory diseases, can result in hypopituitarism, and there are also genetic causes of hypopituitarism. Furthermore, the use of immune checkpoint inhibitors to treat cancer is increasing the risk of hypopituitarism, with a pattern of hormone defects that is different from the classic patterns and depends on mechanisms that are specific for each drug. Moreover, autoantibody production against the pituitary and hypothalamus has been demonstrated in studies investigating the development or worsening of some cases of hypopituitarism. Finally, evidence suggests that posterior pituitary damage can affect oxytocin secretion. The aim of this Review is to summarize current knowledge on non-classic and emerging causes of hypopituitarism, so as to help clinicians improve early identification, avoid life-threatening events and improve the clinical care and quality of life of patients at risk of hypopituitarism.

Key points

  • Growing evidence identifies new and complex phenotypes of hypopituitarism caused by different clinical conditions other than sellar and/or suprasellar lesions.

  • Genetic causes, traumatic brain injury or aneurysmal subarachnoid haemorrhage, autoimmune and inflammatory diseases, and the use of immune checkpoint inhibitors as antineoplastic agents are all non-classic causes that can be associated with hypopituitarism.

  • Data suggest that posterior pituitary damage can affect oxytocin secretion, potentially increasing depression, anxiety and alexithymia, thereby underlining the relationship between behaviour alterations, metabolism and regulation of food intake and pituitary function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Pituitary and non-pituitary tumours.
Fig. 2: Genetic combined pituitary hormone deficiency.
Fig. 3: Primary empty sella.
Fig. 4: Autoimmune lymphocytic hypophysitis.

Similar content being viewed by others

References

  1. Simmonds, M. Uber hypophysisschwund mit todlichem ausgang. Dtsch. Med. Wschr. 40, 322–323 (1914).

    Google Scholar 

  2. Alexandraki, K. I. & Grossman, A. Management of hypopituitarism. J. Clin. Med. 8, 2153 (2019).

    CAS  PubMed Central  Google Scholar 

  3. Miljić, D. & Popovic, V. Metabolic syndrome in hypopituitarism. Front. Horm. Res. 49, 1–19 (2018).

    PubMed  Google Scholar 

  4. Pekic, S. & Popovic, V. Diagnosis of endocrine disease: expanding the cause of hypopituitarism. Eur. J. Endocrinol. 176, R269–R282 (2017). This review discusses less common causes of hypopituitarism, including infiltrative and infective diseases.

    CAS  PubMed  Google Scholar 

  5. Fleseriu, M. et al. Hormonal replacement in hypopituitarism in adults: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 3888–3921 (2016).

    CAS  PubMed  Google Scholar 

  6. Tanriverdi, F. et al. Pituitary dysfunction after traumatic brain injury: a clinical and pathophysiological approach. Endocr. Rev. 36, 305–342 (2015).

    CAS  PubMed  Google Scholar 

  7. Schneider, H. J., Aimaretti, G., Kreitschmann-Andermahr, I., Stalla, G. K. & Ghigo, E. Hypopituitarism. Lancet 369, 1461–1470 (2007).

    CAS  PubMed  Google Scholar 

  8. Bernard, V., Young, J. & Binart, N. Prolactin – a pleiotropic factor in health and disease. Nat. Rev. Endocrinol. 15, 356–365 (2019).

    CAS  PubMed  Google Scholar 

  9. McCormack, S. E., Blevins, J. E. & Lawson, E. A. Metabolic effects of oxytocin. Endocr. Rev. 41, 121–145 (2020). This review summarizes the effects of oxytocin on metabolism, underlining the growing evidence on the actions in modulating reward-driven food intake.

    Google Scholar 

  10. Lawson, E. A. The effects of oxytocin on eating behaviour and metabolism in humans. Nat. Rev. Endocrinol. 13, 700–709 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Molitch, M. E. Diagnosis and treatment of pituitary adenomas: a review. JAMA 317, 516–524 (2017).

    PubMed  Google Scholar 

  12. Mehta, P. et al. Are hypothalamic- pituitary (HP) axis deficiencies after whole brain radiotherapy (WBRT) of relevance for adult cancer patients? – a systematic review of the literature. BMC Cancer 19, 1213 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Abushamat, L. A., Kerr, J. M., Lopes, M. B. S. & Kleinschmidt-DeMasters, B. K. Very unusual sellar/suprasellar region masses: a review. J. Neuropathol. Exp. Neurol. 78, 673–684 (2019). This review updates the available literature on emerging causes of hypopituitarism, highlighting the importance of the differential diagnosis of sellar and parasellar masses.

    Google Scholar 

  14. Gatto, F. et al. Diagnosis and treatment of parasellar lesions. Neuroendocrinology 110, 728–739 (2020).

    CAS  PubMed  Google Scholar 

  15. Higham, C. E., Johannsson, G. & Shalet, S. M. Hypopituitarism. Lancet 388, 2403–2415 (2016).

    CAS  PubMed  Google Scholar 

  16. Phillips, J. A. 3rd & Cogan, J. D. Genetic basis of endocrine disease. 6. Molecular basis of familial human growth hormone deficiency. J. Clin. Endocrinol. Metab. 78, 11–16 (1994).

    CAS  PubMed  Google Scholar 

  17. De Rienzo, F. Frequency of genetic defects in combined pituitary hormone deficiency: a systematic review and analysis of a multicentre Italian cohort. Clin. Endocrinol. 83, 849–860 (2015).

    Google Scholar 

  18. Giordano, M. Genetic causes of isolated and combined pituitary hormone deficiency. Best Pract. Res. Clin. Endocrinol. Metab. 30, 679–691 (2016). This publication provides an overview of the genetic causes of IGHD and CPHD, the prevalence of mutations identified in known genes and advances in the understanding of novel genetic mechanisms.

    CAS  PubMed  Google Scholar 

  19. Gregory, L. C. & Dattani, M. T. The molecular basis of congenital hypopituitarism and related disorders. J. Clin. Endocrinol. Metab. 105, e2103–e2120 (2020).

    Google Scholar 

  20. Di Iorgi, N. Classical and non-classical causes of GH deficiency in the paediatric age. Best Pract. Res. Clin. Endocrinol. Metab. 30, 705–736 (2016).

    PubMed  Google Scholar 

  21. Castinetti, F. et al. Mechanisms in endocrinology: an update in the genetic aetiologies of combined pituitary hormone deficiency. Eur. J. Endocrinol. 174, R239–R247 (2016).

    CAS  PubMed  Google Scholar 

  22. Fang, Q. et al. Genetics of combined pituitary hormone deficiency: roadmap into the genome era. Endocr. Rev. 37, 636–675 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bonomi, M. Characteristics of a nationwide cohort of patients presenting with isolated hypogonadotropic hypogonadism (IHH). Eur. J. Endocrinol. 178, 23–32 (2018).

    CAS  PubMed  Google Scholar 

  24. Bellone, S. et al. Etiopathogenetic advances and management of holoprosencephaly: from bench to bedside. Panminerva Med. 52, 345–354 (2010).

    CAS  PubMed  Google Scholar 

  25. Alatzoglou, K. S. & Dattani, M. T. Genetic causes and treatment of isolated growth hormone deficiency–an update. Nat. Rev. Endocrinol. 6, 562–576 (2010).

    CAS  PubMed  Google Scholar 

  26. Woods, K. S. et al. Over- and underdosage of SOX3 is associated with infundibular hypoplasia and hypopituitarism. Am. J. Hum. Genet. 76, 833–849 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rizzoti, K. et al. SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat. Genet. 36, 247–255 (2004).

    CAS  PubMed  Google Scholar 

  28. Hughes, I. A., Nihoul-Fékété, C., Thomas, B. & Cohen-Kettenis, P. T. Consequences of the ESPE/LWPES guidelines for diagnosis and treatment of disorders of sex development. Best Pract. Res. Clin. Endocrinol. Metab. 21, 351–365 (2007).

    PubMed  Google Scholar 

  29. Network for Central Hypogonadism (Network Ipogonadismo Centrale, NICe) of Italian Societies of Endocrinology (SIE), of Andrology and Sexual Medicine (SIAMS) and of Peadiatric Endocrinology and Diabetes (SIEDP). Kallmann’s syndrome and normosmic isolated hypogonadotropic hypogonadism: two largely overlapping manifestations of one rare disorder. J. Endocrinol. Invest. 37, 499–500 (2014).

    Google Scholar 

  30. Salonia, A. et al. Paediatric and adult-onset male hypogonadism. Nat. Rev. Dis. Primers 5, 38 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Boehm, U. et al. Expert consensus document: European consensus statement on congenital hypogonadotropic hypogonadism–pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 11, 547–564 (2015).

    PubMed  Google Scholar 

  32. Persani, L., Cangiano, B. & Bonomi, M. The diagnosis and management of central hypothyroidism in 2018. Endocr. Connect. 8, R44–R54 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Akcan, N. et al. A novel TBX19 gene mutation in a case of congenital isolated adrenocorticotropic hormone deficiency presenting with recurrent respiratory tract infections. Front. Endocrinol. 8, 64 (2017).

    Google Scholar 

  34. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998).

    CAS  PubMed  Google Scholar 

  35. Couture, C. et al. Phenotypic homogeneity and genotypic variability in a large series of congenital isolated ACTH-deficiency patients with TPIT gene mutations. J. Clin. Endocrinol. Metab. 97, E486–E495 (2012).

    CAS  PubMed  Google Scholar 

  36. Stijnen, P., Ramos-Molina, B., O’Rahilly, S. & Creemers, J. W. PCSK1 mutations and human endocrinopathies: from obesity to gastrointestinal disorders. Endocr. Rev. 37, 347–371 (2016).

    CAS  PubMed  Google Scholar 

  37. Reynaud, R. et al. Pituitary stalk interruption syndrome in 83 patients: novel HESX1 mutation and severe hormonal prognosis in malformative forms. Eur. J. Endocrinol. 164, 457–465 (2011).

    CAS  PubMed  Google Scholar 

  38. Tommiska, J. et al. Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis. Nat. Commun. 8, 1289 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Vergier, J. et al. Diagnosis of endocrine disease: pituitary stalk interruption syndrome: etiology and clinical manifestations. Eur. J. Endocrinol. 181, R199–R209 (2019).

    CAS  PubMed  Google Scholar 

  40. Briet, C., Salenave, S., Bonneville, J. F., Laws, E. R. & Chanson, P. Pituitary apoplexy. Endocr. Rev. 36, 622–645 (2015). This article provides a comprehensive dissertation on pituitary apoplexy, including epidemiology, diagnosis, clinical presentation, endocrine dysfunction and management.

    PubMed  Google Scholar 

  41. Wildemberg, L. E., Glezer, A., Bronstein, M. D. & Gadelha, M. R. Apoplexy in nonfunctioning pituitary adenomas. Pituitary 21, 138–144 (2018).

    PubMed  Google Scholar 

  42. Rajasekaran, S. et al. UK guidelines for the management of pituitary apoplexy. Clin. Endocrinol. 74, 9–20 (2011).

    Google Scholar 

  43. Capatina, C., Inder, W., Karavitaki, N. & Wass, J. A. Management of endocrine disease: pituitary tumour apoplexy. Eur. J. Endocrinol. 172, R179–R190 (2015).

    CAS  PubMed  Google Scholar 

  44. Fountas, A., Andrikoula, M. & Tsatsoulis, A. A 45 year old patient with headache, fever, and hyponatraemia. BMJ 350, h962 (2015).

    PubMed  Google Scholar 

  45. Karaca, Z., Laway, B. A., Dokmetas, H. S., Atmaca, H. & Kelestimur, F. Sheehan syndrome. Nat. Rev. Dis. Primers 2, 16092 (2016).

    PubMed  Google Scholar 

  46. Tanriverdi, F. et al. Etiology of hypopituitarism in tertiary care institutions in Turkish population: analysis of 773 patients from Pituitary Study Group database. Endocrine 47, 198–205 (2014).

    CAS  PubMed  Google Scholar 

  47. Diri, H. et al. Extensive investigation of 114 patients with Sheehan’s syndrome: a continuing disorder. Eur. J. Endocrinol. 171, 311–318 (2014). This study investigates the clinical, laboratory and radiological aspects of Sheehan syndrome, a common cause of hypopituitarism in developing countries, which is often underdiagnosed because of non-specific symptoms and under-resourced health-care systems.

    CAS  PubMed  Google Scholar 

  48. Auer, M. K. et al. Primary empty sella syndrome and the prevalence of hormonal dysregulation. Dtsch. Arztebl Int. 115, 99–105 (2018).

    PubMed  Google Scholar 

  49. Chiloiro, S. et al. Diagnosis of endocrine disease: primary empty sella: a comprehensive review. Eur. J. Endocrinol. 177, R275–R285 (2017).

    CAS  PubMed  Google Scholar 

  50. Giustina, A. et al. Primary empty sella: why and when to investigate hypothalamic-pituitary function. J. Endocrinol. Invest. 33, 343–346 (2010).

    CAS  PubMed  Google Scholar 

  51. Guitelman, M. et al. Primary empty sella (PES): a review of 175 cases. Pituitary 16, 270–274 (2013). This multicentre retrospective study reports clinical, radiological and hormonal data of patients affected by primary empty sella, underlining the heterogeneity of pathogenesis and presentation.

    CAS  PubMed  Google Scholar 

  52. Nguyen, R. et al. The international incidence of traumatic brain injury: a systematic review and meta-analysis. Can. J. Neurol. Sci. 43, 774–785 (2016).

    PubMed  Google Scholar 

  53. van Gijn, J., Kerr, R. & Rinkel, G. Subarachnoid haemorrhage. Lancet 369, 306–318 (2007).

    PubMed  Google Scholar 

  54. Kelly, D. F. et al. Hypopituitarism following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a preliminary report. J. Neurosurg. 93, 743–752 (2000).

    CAS  PubMed  Google Scholar 

  55. Lieberman, S. A., Oberoi, A. L., Gilkison, C. R., Masel, B. E. & Urban, R. J. Prevalence of neuroendocrine dysfunction in patients recovering from traumatic brain injury. J. Clin. Endocrinol. Metab. 86, 2752–2756 (2001).

    CAS  PubMed  Google Scholar 

  56. Bondanelli, M. et al. Occurrence of pituitary dysfunction following traumatic brain injury. J. Neurotrauma 21, 685–696 (2004).

    PubMed  Google Scholar 

  57. Aimaretti, G. et al. Traumatic brain injury and subarachnoid haemorrhage are conditions at high risk for hypopituitarism: screening study at 3 months after the brain injury. Clin. Endocrinol. 61, 320–326 (2004).

    CAS  Google Scholar 

  58. Aimaretti, G. et al. Residual pituitary function after brain injury-induced hypopituitarism: a prospective 12-month study. J. Clin. Endocrinol. Metab. 90, 6085–6092 (2005).

    CAS  PubMed  Google Scholar 

  59. Agha, A. et al. Anterior pituitary dysfunction in survivors of traumatic brain injury. J. Clin. Endocrinol. Metab. 89, 4929–4936 (2004).

    CAS  PubMed  Google Scholar 

  60. Agha, A. et al. Posterior pituitary dysfunction after traumatic brain injury. J. Clin. Endocrinol. Metab. 89, 5987–5992 (2004).

    CAS  PubMed  Google Scholar 

  61. Popovic, V. et al. Hypopituitarism as a consequence of traumatic brain injury (TBI) and its possible relation with cognitive disabilities and mental distress. J. Endocrinol. Invest. 27, 1048–1054 (2004).

    CAS  PubMed  Google Scholar 

  62. Leal-Cerro, A. et al. Prevalence of hypopituitarism and growth hormone deficiency in adults long-term after severe traumatic brain injury. Clin. Endocrinol. 62, 525–532 (2005).

    CAS  Google Scholar 

  63. Agha, A. et al. The natural history of post-traumatic neurohypophysial dysfunction. Eur. J. Endocrinol. 152, 371–377 (2005).

    CAS  PubMed  Google Scholar 

  64. Agha, A. et al. The natural history of post-traumatic hypopituitarism: implications for assessment and treatment. Am. J. Med. 118, 1416 (2005).

    PubMed  Google Scholar 

  65. Schneider, H. J. et al. Prevalence of anterior pituitary insufficiency 3 and 12 months after traumatic brain injury. Eur. J. Endocrinol. 154, 259–265 (2006).

    CAS  PubMed  Google Scholar 

  66. Tanriverdi, F. et al. High risk of hypopituitarism after traumatic brain injury: a prospective investigation of anterior pituitary function in the acute phase and at 12-months after the trauma. J. Clin. Endocrinol. Metab. 91, 2105–2111 (2006).

    CAS  PubMed  Google Scholar 

  67. Herrmann, B. L. et al. Hypopituitarism following severe traumatic brain injury. Exp. Clin. Endocrinol. Diabetes 114, 316–321 (2006).

    CAS  PubMed  Google Scholar 

  68. Einaudi, S. et al. Hypohalamo-hypophysial dysfunction after traumatic brain injury in children and adolescents: a preliminary retrospective and prospective study. J. Pediatr. Endocrinol. Metab. 19, 691–703 (2006).

    CAS  PubMed  Google Scholar 

  69. Niederland, T. et al. Abnormalities of pituitary function after traumatic brain injury in children. J. Neurotrauma 24, 119–127 (2007).

    PubMed  Google Scholar 

  70. Brandt, L. et al. Fatigue after aneurysmal subarachnoid hemorrhage evaluated by pituitary function and 3D-CBF. Acta Neurol. Scand. 109, 91–96 (2004).

    CAS  PubMed  Google Scholar 

  71. Kreitschmann-Andermahr, I. et al. Prevalence of pituitary deficiency in patients after aneurysmal subarachnoid hemorrhage. J. Clin. Endocrinol. Metab. 89, 4986–4992 (2004).

    CAS  PubMed  Google Scholar 

  72. Dimopoulou, I. et al. High incidence of neuroendocrine dysfunction in long-term survivors of aneurysmal subarachnoid hemorrhage. Stroke 35, 2884–2889 (2004).

    PubMed  Google Scholar 

  73. Klose, M. et al. Prevalence and predictive factors of post-traumatic hypopituitarism. Clin. Endocrinol. 67, 193–201 (2007).

    CAS  Google Scholar 

  74. Schneider, H. J., Kreitschmann-Andermahr, I., Ghigo, E., Stalla, G. K. & Agha, A. Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a systematic review. JAMA 298, 1429–1438 (2007). This review highlights the importance of the diagnosis of hypothalamus–pituitary dysfunction as a consequence of TBI and subarachnoid haemorrhage, describing the natural history of this complication, and its clinical and public health impacts.

    CAS  PubMed  Google Scholar 

  75. Cryan, E. Pituitary demage due to skull base fracture. Dtsch. Med. Wschr. 44, 1261 (1918).

    Google Scholar 

  76. Hoff, W. V., Hornabrook, R. W. & Marks, V. Hypopituitarism associated with intracranial aneurysms. Br. Med. J. 2, 1190–1194 (1961).

    CAS  PubMed  Google Scholar 

  77. Park, K. D., Kim, D. Y., Lee, J. K., Nam, H. S. & Park, Y. G. Anterior pituitary dysfunction in moderate-to-severe chronic traumatic brain injury patients and the influence on functional outcome. Brain Inj. 24, 1330–1335 (2010).

    PubMed  Google Scholar 

  78. Caputo, M., Mele, C., Prodam, F., Marzullo, P. & Aimaretti, G. Clinical picture and the treatment of TBI-induced hypopituitarism. Pituitary 22, 261–269 (2019).

    PubMed  Google Scholar 

  79. Tanriverdi, F. et al. Apolipoprotein E3/E3 genotype decreases the risk of pituitary dysfunction after traumatic brain injury due to various causes: preliminary data. J. Neurotrauma 25, 1071–1077 (2008).

    PubMed  Google Scholar 

  80. Tanriverdi, F. et al. Antipituitary antibodies after traumatic brain injury: is head trauma-induced pituitary dysfunction associated with autoimmunity? Eur. J. Endocrinol. 159, 7–13 (2008).

    CAS  PubMed  Google Scholar 

  81. Karaca, Z., Tanrıverdi, F., Ünlühızarcı, K. & Kelestimur, F. GH and pituitary hormone alterations after traumatic brain injury. Prog. Mol. Biol. Transl. Sci. 138, 167–191 (2016).

    PubMed  Google Scholar 

  82. Jovanovic, V. et al. Neuroendocrine dysfunction in patients recovering from subarachnoid hemorrhage. Hormones 9, 235–244 (2010).

    PubMed  Google Scholar 

  83. Klose, M. et al. Hypopituitarism is uncommon after aneurysmal subarachnoid haemorrhage. Clin. Endocrinol. 73, 95–101 (2010).

    Google Scholar 

  84. Tanriverdi, F. et al. Kickboxing sport as a new cause of traumatic brain injury-mediated hypopituitarism. Clin. Endocrinol. 66, 360–366 (2007).

    Google Scholar 

  85. Tanriverdi, F. et al. Brief communication: pituitary volume and function in competing and retired male boxers. Ann. Intern. Med. 148, 827–831 (2008).

    PubMed  Google Scholar 

  86. Karamouzis, I. et al. Clinical and diagnostic approach to patients with hypopituitarism due to traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), and ischemic stroke (IS). Endocrine 52, 441–450 (2016).

    CAS  PubMed  Google Scholar 

  87. Tanriverdi, F. et al. Manifesto for the current understanding and management of traumatic brain injury-induced hypopituitarism. J. Endocrinol. Invest. 34, 541–543 (2011).

    CAS  PubMed  Google Scholar 

  88. Hannon, M. J., Sherlock, M. & Thompson, C. J. Pituitary dysfunction following traumatic brain injury or subarachnoid haemorrhage - in “Endocrine Management in the Intensive Care Unit”. Best Pract. Res. Clin. Endocrinol. Metab. 25, 783–798 (2011).

    CAS  PubMed  Google Scholar 

  89. Klose, M., Watt, T., Brennum, J. & Feldt-Rasmussen, U. Posttraumatic hypopituitarism is associated with an unfavorable body composition and lipid profile, and decreased quality of life 12 months after injury. J. Clin. Endocrinol. Metab. 92, 3861–3868 (2007).

    CAS  PubMed  Google Scholar 

  90. Prodam, F. et al. Metabolic alterations in patients who develop traumatic brain injury (TBI)-induced hypopituitarism. Growth Horm. IGF Res. 23, 109–113 (2013).

    CAS  PubMed  Google Scholar 

  91. Molaie, A. M. & Maguire, J. Neuroendocrine abnormalities following traumatic brain injury: an important contributor to neuropsychiatric sequelae. Front. Endocrinol. 9, 176 (2018).

    Google Scholar 

  92. Cuesta, M. et al. Symptoms of gonadal dysfunction are more predictive of hypopituitarism than nonspecific symptoms in screening for pituitary dysfunction following moderate or severe traumatic brain injury. Clin. Endocrinol. 84, 92–98 (2016).

    CAS  Google Scholar 

  93. Tan, C. L. et al. The screening and management of pituitary dysfunction following traumatic brain injury in adults: British Neurotrauma Group guidance. J. Neurol. Neurosurg. Psychiatry 88, 971–981 (2017).

    PubMed  Google Scholar 

  94. Glynn, N. & Agha, A. The frequency and the diagnosis of pituitary dysfunction after traumatic brain injury. Pituitary 22, 249–260 (2019).

    PubMed  Google Scholar 

  95. Krewer, C. Neuroendocrine disturbances one to five or more years after traumatic brain injury and aneurysmal subarachnoid hemorrhage: data from the German database on hypopituitarism. J. Neurotrauma 33, 1544–1553 (2016).

    PubMed  Google Scholar 

  96. Hannon, M. J. et al. Acute glucocorticoid deficiency and diabetes insipidus are common after acute traumatic brain injury and predict mortality. J. Clin. Endocrinol. Metab. 98, 3229–3237 (2013).

    CAS  PubMed  Google Scholar 

  97. Lanterna, L. A. et al. Hypocortisolism in noncomatose patients during the acute phase of subarachnoid hemorrhage. J. Stroke Cerebrovasc. Dis. 22, e189–e196 (2013).

    PubMed  Google Scholar 

  98. Cohan, P. et al. Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit. Care Med. 33, 2358–2366 (2005).

    CAS  PubMed  Google Scholar 

  99. Quinn, M. & Agha, A. Post-traumatic hypopituitarism–who should be screened, when, and how? Front. Endocrinol. 9, 8 (2018).

    Google Scholar 

  100. Jonasdottir, A. D. et al. Hypopituitarism 3 and 12 months after traumatic brain injury and subarachnoid haemorrhage. Brain Inj. 32, 310–317 (2018).

    PubMed  Google Scholar 

  101. Prodam, F. et al. Quality of life, mood disturbances and psychological parameters in adult patients with GH deficiency. Panminerva Med. 54, 323–331 (2012).

    CAS  PubMed  Google Scholar 

  102. Undurti, A. et al. Chronic hypopituitarism associated with increased postconcussive symptoms is prevalent after blast-induced mild traumatic brain injury. Front. Neurol. 9, 72 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Caturegli, P. et al. Autoimmune hypophysitis. Endocr. Rev. 26, 599–614 (2005).

    CAS  PubMed  Google Scholar 

  104. Bellastella, G. et al. Revisitation of autoimmune hypophysitis: knowledge and uncertainties on pathophysiological and clinical aspects. Pituitary 19, 625–642 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gubbi, S., Hannah-Shmouni, F., Verbalis, J. G. & Koch, C. A. Hypophysitis: an update on the novel forms, diagnosis and management of disorders of pituitary inflammation. Best Pract. Res. Clin. Endocrinol. Metab. 33, 101371 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Caranci, F. et al. Imaging findings in hypophysitis: a review. Radiol. Med. 125, 319–328 (2020).

    PubMed  Google Scholar 

  107. Takagi, H. et al. Diagnosis and treatment of autoimmune and IgG4-related hypophysitis: clinical guidelines of the Japan Endocrine Society. Endocr. J. 67, 373–378 (2020).

    CAS  PubMed  Google Scholar 

  108. Yuen, K. C. J., Popovic, V. & Trainer, P. J. New causes of hypophysitis. Best Pract. Res. Clin. Endocrinol. Metab. 33, 101276 (2019).

    PubMed  Google Scholar 

  109. Khare, S. et al. Primary (autoimmune) hypophysitis: a single centre experience. Pituitary 18, 16–22 (2015).

    CAS  PubMed  Google Scholar 

  110. Angelousi, A. et al. Clinical, endocrine and imaging characteristics of patients with primary hypophysitis. Horm. Metab. Res. 50, 296–302 (2018).

    CAS  PubMed  Google Scholar 

  111. Takahashi, Y. Mechanisms in endocrinology: autoimmune hypopituitarism: novel mechanistic insights. Eur. J. Endocrinol. 182, R59–R66 (2020).

    CAS  PubMed  Google Scholar 

  112. Caturegli, P. et al. Hypophysitis secondary to cytotoxic T-lymphocyte-associated protein 4 blockade: insights into pathogenesis from an autopsy series. Am. J. Pathol. 186, 3225–3235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. De Bellis, A. The role of autoimmunity in pituitary dysfunction due to traumatic brain injury. Pituitary 22, 236–248 (2019).

    PubMed  Google Scholar 

  114. Yamamoto, M. et al. Adult combined GH, prolactin, and TSH deficiency associated with circulating PIT-1 antibody in humans. J. Clin. Invest. 121, 113–119 (2011).

    CAS  PubMed  Google Scholar 

  115. Yamamoto, M. et al. Autoimmune pituitary disease: new concepts with clinical implications. Endocr. Rev. 41, 261–272 (2020). This review describes the different mechanisms of pituitary autoimmunity associated with autoimmune hypophysitis, IgG4-related hypophysitis and immune checkpoint-induced hypophysitis, providing a complete and updated revision on this topic.

    Google Scholar 

  116. Smith, C. J. et al. Identification of TPIT and other novel autoantigens in lymphocytic hypophysitis: immunoscreening of a pituitary cDNA library and development of immunoprecipitation assays. Eur. J. Endocrinol. 166, 391–398 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Quentien, M. H. et al. Deficit in anterior pituitary function and variable immune deficiency (DAVID) in children presenting with adrenocorticotropin deficiency and severe infections. J. Clin. Endocrinol. Metab. 97, E121–E128 (2012).

    CAS  PubMed  Google Scholar 

  118. Lal, R. A. et al. A case report of hypoglycemia and hypogammaglobulinemia: DAVID syndrome in a patient with a novel NFKB2 mutation. J. Clin. Endocrinol. Metab. 102, 2127–2130 (2017).

    PubMed  Google Scholar 

  119. Tebben, P. J., Atkinson, J. L., Scheithauer, B. W. & Erickson, D. Granulomatous adenohypophysitis after interferon and ribavirin therapy. Endocr. Pract. 13, 169–175 (2007).

    PubMed  Google Scholar 

  120. Burugu, S., Dancsok, A. R. & Nielsen, T. O. Emerging targets in cancer immunotherapy. Semin. Cancer Biol. 52, 39–52 (2018).

    CAS  PubMed  Google Scholar 

  121. Brahmer, J. R. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 36, 1714–1768 (2018).

    CAS  PubMed  Google Scholar 

  122. Barroso-Sousa, R. et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol. 4, 173–182 (2018).

    PubMed  Google Scholar 

  123. Chang, L. S. et al. Endocrine toxicity of cancer immunotherapy targeting immune checkpoints. Endocr. Rev. 40, 17–65 (2019).

    PubMed  Google Scholar 

  124. Faje, A. T. et al. Ipilimumab-induced hypophysitis: a detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J. Clin. Endocrinol. Metab. 99, 4078–4085 (2014).

    CAS  PubMed  Google Scholar 

  125. Michot, J. M. et al. Immune-related adverse events with immune check- point blockade: a comprehensive review. Eur. J. Cancer. 54, 139–148 (2016).

    CAS  PubMed  Google Scholar 

  126. Horvat, T. Z. et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 33, 3193–3198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Joshi, M. N., Whitelaw, B. C., Palomar, M. T. P., Wu, Y. & Carroll, P. V. Immune checkpoint inhibitor-related hypophysitis and endocrine dysfunction. Clin. Endocrinol. 85, 331–339 (2016).

    CAS  Google Scholar 

  128. Weber, J. S. et al. Patterns of onset and resolution of immune- related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer 119, 1675–1682 (2013).

    CAS  PubMed  Google Scholar 

  129. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2354–2443 (2012).

    Google Scholar 

  130. Guaraldi, F. et al. Characterization and implications of thyroid dysfunction induced by immune checkpoint inhibitors in real-life clinical practice: a long-term prospective study from a referral institution. J. Endocrinol. Invest. 41, 549–556 (2018).

    CAS  PubMed  Google Scholar 

  131. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Ryder, M. et al. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr. Relat. Cancer. 21, 371–81 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Eggermont, A. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 16, 522–30 (2015).

    CAS  PubMed  Google Scholar 

  134. Khoja, L. et al. Real-world efficacy, toxicity and clinical management of ipilimumab treatment in metastatic melanoma. Oncol. Lett. 11, 1581–1585 (2016).

    CAS  PubMed  Google Scholar 

  135. Ascierto, P. A. et al. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 18, 611–622 (2017).

    CAS  PubMed  Google Scholar 

  136. Brilli, L. et al. Prevalence of hypophysitis in a cohort of patients with metastatic melanoma and prostate cancer treated with ipilimumab. Endocrine. 58, 535–541 (2017).

    CAS  PubMed  Google Scholar 

  137. Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

    CAS  PubMed  Google Scholar 

  138. Sznol, M. et al. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. Cancer Treat. Rev. 58, 70–76 (2017).

    CAS  PubMed  Google Scholar 

  139. Corsello, S. M. Endocrine side-effects induced by immune check-point inhibitors. J. Clin. Endocrinol. Metab. 98, 1361–1375 (2013).

    CAS  PubMed  Google Scholar 

  140. Marlier, J., Cocquyt, V., Brochez, L., Van Belle, S. & Kruse, V. Ipilimumab, not just another anti-cancer therapy: hypophysitis as side effect illustrated by four case-reports. Endocrine 47, 878–883 (2014).

    CAS  PubMed  Google Scholar 

  141. Dillard, T., Yedinak, C. G., Alumkal, J. & Fleseriu, M. Anti-CTLA-4 antibody therapy associated autoimmune hypophysitis: serious immune related adverse events across a spectrum of cancer subtypes. Pituitary 13, 29–38 (2010).

    CAS  PubMed  Google Scholar 

  142. Blansfield, J. A. et al. Cytotoxic T lymphocyte associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J. Immunother. 28, 593–598 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Byun, D. J., Wolchok, J. D., Rosenberg, L. M. & Girotra, M. Cancer immunotherapy – immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol. 13, 195–207 (2017). This review discusses current data on endocrine complications following the emerging use in oncology of immune CPIs, underlining the importance of hormonal assessment in these patients.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Girotra, M. et al. The current understanding of the endocrine effects from immune checkpoint inhibitors and recommendations for management. JNCI Cancer Spectr. 2, pky021 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Lammert, A. et al. Hypophysitis caused by ipilimumab in cancer patients: hormone replacement or immunosuppressive therapy. Exp. Clin. Endocrinol. Diabetes 121, 581–587 (2013).

    CAS  PubMed  Google Scholar 

  146. Carpenter, K. J., Murtagh, R. D., Lilienfeld, H., Weber, J. & Murtagh, F. R. Ipilimumab-induced hypophysitis: MR imaging findings. Am. J. Neuroradiol. 30, 1751–1753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Min, L. et al. Systemic high-dose corticosteroid treatment does not improve the outcome of ipilimumab-related hypophysitis: a retrospective cohort study. Clin. Cancer Res. 21, 749–755 (2015).

    CAS  PubMed  Google Scholar 

  148. Webb, S. M., Rigla, M., Wägner, A., Oliver, B. & Bartumeus, F. Recovery of hypopituitarism after neurosurgical treatment of pituitary adenomas. J. Clin. Endocrinol. Metab. 84, 3696–3700 (1999).

    CAS  PubMed  Google Scholar 

  149. Iwama, S. et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 6, 230ra245 (2014).

    Google Scholar 

  150. Gonzalez-Rodrıguez, E., Rodriguez-Abreu, D. & Spanish Group for Immuno-Biotherapy (GETICA). Immune checkpoint inhibitors: review and management of endocrine adverse events. Oncologist 21, 804–816 (2016).

    PubMed  PubMed Central  Google Scholar 

  151. Roberts, K., Culleton, V., Lwin, Z., O’Byrne, K. & Hughes, B. G. Immune checkpoint inhibitors: navigating a new paradigm of treatment toxicities. Asia Pac. J. Clin. Oncol. 13, 277–288 (2017).

    PubMed  Google Scholar 

  152. Shang, Y. et al. Risk of endocrine adverse events in cancer patients treated with PD-1 inhibitors: a systematic review and meta-analysis. Immunotherapy 9, 261–272 (2017).

    CAS  PubMed  Google Scholar 

  153. Lannuzzi, M. C., Rybicky, B. A. & Teirstein, A. S. Sarcoidosis. N. Engl. J. Med. 357, 2153–2165 (2007).

    Google Scholar 

  154. Anthony, J., Esper, G. J. & Ioachimescu, A. Hypothalamic-pituitary sarcoidosis with vision loss and hypopituitarism: case series and literature review. Pituitary 19, 19–29 (2016).

    CAS  PubMed  Google Scholar 

  155. Zajicek, J. P. et al. Central nervous system sarcoidosis–diagnosis and management. QJM 92, 103–117 (1999).

    CAS  PubMed  Google Scholar 

  156. Langrand, C. et al. Hypothalamo-pituitary sarcoidosis: a multicenter study of 24 patients. QJM 105, 981–995 (2012).

    CAS  PubMed  Google Scholar 

  157. Young, J. Endocrine consequences of hemochromatosis. Presse Med. 36, 1319–1325 (2007).

    PubMed  Google Scholar 

  158. Pelusi, C., Gasparini, D. I., Bianchi, N. & Pasquali, R. Endocrine dysfunction in hereditary hemochromatosis. J. Endocrinol. Invest. 39, 837–847 (2016).

    CAS  PubMed  Google Scholar 

  159. Kara, O., Demirel, F., Acar, B. C. & Cakar, N. Wegener granulomatosis as an uncommon cause of panhypopituitarism in childhood. J. Pediatr. Endocrinol. Metab. 26, 959–962 (2013).

    PubMed  Google Scholar 

  160. Kapoor, E. et al. Pituitary dysfunction in granulomatosis with polyangiitis: the Mayo Clinic experience. J. Clin. Endocrinol. Metab. 99, 3988–3994 (2014).

    CAS  PubMed  Google Scholar 

  161. De Parisot, A. et al. Pituitary involvement in granulomatosis with polyangiitis: report of 9 patients and review of the literature. Medicine 94, e748 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. Imashuku, S. et al. Treatment of patients with hypothalamic-pituitary lesions as adult-onset Langerhans cell histiocytosis. Int. J. Hematol. 94, 556–560 (2011).

    PubMed  Google Scholar 

  163. Cives, M. et al. Erdheim-Chester disease: a systematic review. Crit. Rev. Oncol. Hematol. 95, 1–11 (2015).

    PubMed  Google Scholar 

  164. Pekic, S. & Popovic, V. Alternative causes of hypopituitarism: traumatic brain injury, cranial irradiation, and infections. Handb. Clin. Neurol. 124, 271–290 (2014).

    PubMed  Google Scholar 

  165. Schaefer, S. et al. Hypothalamic-pituitary insufficiency following infectious disease of central nervous system. Eur. J. Endocrinol. 158, 3–9 (2008).

    CAS  PubMed  Google Scholar 

  166. Tsiakalos, A., Xynos, I. D., Sipsas, N. V. & Kaltsas, G. Pituitary insufficiency after infectious meningitis: a prospective study. J. Clin. Endocrinol. Metab. 957, 3277–3281 (2010).

    Google Scholar 

  167. Gao, L. et al. Pituitary abscess: clinical manifestations, diagnosis and treatment of 66 cases from a large pituitary center over 23 years. Pituitary 20, 189–194 (2017).

    PubMed  Google Scholar 

  168. Sharma, M. C. et al. Intrasellar tuberculoma – an enigmatic pituitary infection: a series of 18 cases. Clin. Neurol. Neurosurg. 102, 72–77 (2000).

    CAS  PubMed  Google Scholar 

  169. Tanimoto, K. et al. Reversible hypopituitarism with pituitary tuberculoma. Intern. Med. 54, 1247–1251 (2015).

    PubMed  Google Scholar 

  170. Dhanwal, D. K., Vyas, A., Sharma, A. & Saxena, A. Hypothalamic pituitary abnormalities in tubercular meningitis at the time of diagnosis. Pituitary 13, 304–310 (2010).

    CAS  PubMed  Google Scholar 

  171. Spinner, C. D. et al. Acute hypophysitis and hypopituitarism in early syphilitic meningitis in a HIV-infected patient: a case report. BMC Infect. Dis. 13, 481 (2013).

    PubMed  PubMed Central  Google Scholar 

  172. Beatrice, A. M., Selvan, C. & Mukhopadhyay, S. Pituitary dysfunction in infective brain diseases. Indian J. Endocrinol. Metab. 17, S608–S611 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Hautala, T. et al. Hypophyseal hemorrhage and panhypopituitarism during Puumala virus infection: magnetic resonance imaging and detection of viral antigen in the hypophysis. Clin. Infect. Dis. 35, 96–101 (2002).

    PubMed  Google Scholar 

  174. Sánchez, J. F., Olmedo, M. C., Pascua, F. J. & Casado, I. Diabetes insipidus as a manifestation of cerebral toxoplasmosis in an AIDS patient. Rev. Neurol. 30, 939–940 (2000).

    PubMed  Google Scholar 

  175. George, J. M. Immunoreactive vasopressin and oxytocin: concentration in individual human hypothalamic nuclei. Science 200, 342–343 (1978).

    CAS  PubMed  Google Scholar 

  176. Maejima, Y. et al. Oxytocinergic circuit from paraventricular and supraoptic nuclei to arcuate POMC neurons in hypothalamus. FEBS Lett. 588, 4404–4412 (2014).

    CAS  PubMed  Google Scholar 

  177. Olszewski, P. K., Klockars, A. & Levine, A. S. Oxytocin and potential benefits for obesity treatment. Curr. Opin. Endocrinol. Diabetes Obes. 24, 320–325 (2017).

    CAS  PubMed  Google Scholar 

  178. Ding, C., Leow, M. K. & Magkos, F. Oxytocin in metabolic homeostasis: implications for obesity and diabetes management. Obes. Rev. 20, 22–40 (2019).

    CAS  PubMed  Google Scholar 

  179. Colaianni, G., Sun, L., Zaidi, M. & Zallone, A. The “love hormone” oxytocin regulates the loss and gain of the fat-bone relationship. Front. Endocrinol. 6, 79 (2015).

    Google Scholar 

  180. Zik, J. B. & Roberts, D. L. The many faces of oxytocin: implications for psychiatry. Psychiatry Res. 226, 31–37 (2015).

    CAS  PubMed  Google Scholar 

  181. Aulinas, A. et al. Low plasma oxytocin levels and increased psychopathology in hypopituitary men with diabetes insipidus. J. Clin. Endocrinol. Metab. 104, 3181–3191 (2019).

    PubMed  PubMed Central  Google Scholar 

  182. Hoffmann, A. et al. First experiences with neuropsychological effects of oxytocin administration in childhood-onset craniopharyngioma. Endocrine 56, 175–185 (2017).

    CAS  PubMed  Google Scholar 

  183. Hsu, E. A., Miller, J. L., Perez, F. A. & Roth, C. L. Oxytocin and naltrexone successfully treat hypothalamic obesity in a boy post-craniopharyngioma resection. J. Clin. Endocrinol. Metab. 103, 370–375 (2018).

    PubMed  Google Scholar 

  184. Prodam, F. et al. Pituitary metastases from follicular thyroid carcinoma. Thyroid 20, 823–830 (2010).

    PubMed  Google Scholar 

  185. Badalian-Very, G. et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116, 1919–1923 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E. Agosti for technical advice and assistance with preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the article and made substantial contributions to discussion of content. F.P., M.C., C.M. and P.M researched data for the article. F.P., M.C. and G.A. reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Gianluca Aimaretti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks T. Brue, F. Kelestimur and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Pituitary stalk interruption syndrome

A congenital disorder with the triad of an absent or thin pituitary stalk, an ectopic or absent posterior pituitary and/or absent or hypoplastic anterior pituitary.

Empty sella

A herniation of the subarachnoid space within the sella, which is often associated with a variable degree of flattening of the pituitary gland.

Sella turcica

The superior depression of the sphenoid bone, where the pituitary gland is located.

Aneurysmal subarachnoid haemorrhage

(SAH). Bleeding into the subarachnoid space caused by a ruptured cerebral aneurysm.

Autoimmune polyendocrine syndrome type 2

A syndrome characterized by functional impairment of multiple endocrine glands due to loss of immune tolerance, with at least two of the following three endocrinopathies: type 1 diabetes mellitus, autoimmune thyroiditis and Addison disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prodam, F., Caputo, M., Mele, C. et al. Insights into non-classic and emerging causes of hypopituitarism. Nat Rev Endocrinol 17, 114–129 (2021). https://doi.org/10.1038/s41574-020-00437-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-00437-2

  • Springer Nature Limited

This article is cited by

Navigation