Skip to main content
Log in

Adrenal function and dysfunction in critically ill patients

  • Review Article
  • Published:

From Nature Reviews Endocrinology

View current issue Sign up to alerts

Abstract

Critical illnesses are characterized by increased systemic cortisol availability, which is a vital part of the stress response. Relative adrenal failure (later termed critical-illness-related corticosteroid insufficiency (CIRCI)) is a condition in which the systemic availability of cortisol is assumed to be insufficiently high to face the stress of the illness and is most typically thought to occur in the acute phase of septic shock. Researchers suggested that CIRCI could be diagnosed by a suppressed incremental cortisol response to an injection of adrenocorticotropic hormone, irrespective of the baseline plasma cortisol. This concept triggered several randomized clinical trials on the impact of large stress doses of hydrocortisone to treat CIRCI, which gave conflicting results. Recent novel insights into the response of the hypothalamic–pituitary–adrenal axis to acute and prolonged critical illnesses challenge the concept of CIRCI, as currently defined, as well as the current practice guidelines for diagnosis and treatment. In this Review, these novel insights are integrated within a novel conceptual framework that can be used to re-appreciate adrenocortical function and dysfunction in the context of critical illness. This framework opens new avenues for further research and for preventive and/or therapeutic innovations.

Key points

  • The amount of cortisol that is produced by patients during critical illness is not much higher, if at all, than that produced when healthy.

  • Increased systemic cortisol availability during critical illness is largely driven by decreased cortisol-binding proteins in the circulation, by the reduced binding affinity of these proteins and by suppressed cortisol breakdown.

  • Circulating free cortisol that is elevated via such peripheral mechanisms may partially explain why adrenocorticotropic hormone (ACTH) levels are low in patients with critical illness, owing to feedback inhibition.

  • Low ACTH levels that are present for an extended period of time may negatively affect adrenocortical integrity and function.

  • An ACTH stimulation test is invalid for assessing adrenocortical integrity and function in critically ill patients, as the test results are confounded by the increased cortisol distribution volume.

  • Doses of hydrocortisone currently advised for treating critically ill patients do not take the substantially increased half-life of cortisol into account, are thus likely too high and may further increase central adrenocortical suppression via feedback inhibition.

  • Future research should focus on patients who are critically ill for an extended period, on patients who may be at risk of developing central hypoadrenalism and on novel strategies to prevent and treat this complication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Newly proposed conceptual framework for adrenocortical function and dysfunction during critical illness.
Fig. 2: Time-dependent and dose-dependent changes in plasma concentrations of key components during critical illness.

Similar content being viewed by others

References

  1. Bernard, C. Leçons sur les Phénomènes de la Vie Communs aux Annimaux et aux Végétaux (J.-B. Baillière, Paris, 1878).

  2. Selye, H. A syndrome produced by diverse nocuous agents. Nature 138, 32 (1936).

    Google Scholar 

  3. Guillemin, R. & Rosenberg, B. Humoral hypothalamic control of anterior pituitary: a study with combined tissue cultures. Endocrinology 57, 599–607 (1955).

    CAS  PubMed  Google Scholar 

  4. Guillemin, R. Hypothalamic hormones a.k.a. hypothalamic releasing factors. J. Endocrinol. 184, 11–28 (2005).

    CAS  PubMed  Google Scholar 

  5. Melby, J. C. & Spink, W. W. Comparative studies on adrenal cortical function and cortisol metabolism in healthy adults and in patients with shock due to infection. J. Clin. Invest. 37, 1791–1798 (1958).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vermes, I. & Beishuizen, A. The hypothalamic-pituitary-adrenal response to critical illness. Best Pract. Res. Clin. Endocrinol. Metab. 15, 495–511 (2001).

    CAS  PubMed  Google Scholar 

  7. Boonen, E. et al. Reduced cortisol metabolism during critical illness. N. Engl. J. Med. 368, 1477–1488 (2013). This landmark study documents the contribution of decreased cortisol metabolism to the increase in plasma cortisol levels observed during critical illness.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Boonen, E. et al. Reduced nocturnal ACTH-driven cortisol secretion during critical illness. Am. J. Physiol. Endocrinol. Metab. 306, E883–E892 (2014). In this study, nocturnal ACTH and cortisol secretory profiles are deconvolved from plasma concentration time series in critically ill patients and matched healthy volunteers, revealing suppressed rather than increased ACTH-driven cortisol secretion during critical illness.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Boonen, E. & Van den Berghe, G. Mechanisms in endocrinology: new concepts to further unravel adrenal insufficiency during critical illness. Eur. J. Endocrinol. 175, R1–R9 (2016).

    PubMed  Google Scholar 

  10. Peeters, B. et al. Drug-induced HPA axis alterations during acute critical illness: a multivariable association study. Clin. Endocrinol. (Oxf.) 86, 26–36 (2017). This study identifies iatrogenically suppressed cortisol by drugs frequently used in the ICU.

    CAS  Google Scholar 

  11. Peeters, B. et al. Adrenocortical function during prolonged critical illness and beyond: a prospective observational study. Intensive Care Med. 44, 1720–1729 (2018). This study is the first to document adrenocortical function during the prolonged phase of critical illness and the first week of recovery, identifying a possible central suppression of adrenocortical function during an ICU stay. This study also shows that the ACTH stimulation test is invalid for assessing adrenocortical integrity and function in the context of critical illness.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Peeters, B. et al. ACTH and cortisol responses to CRH in acute, subacute, and prolonged critical illness: a randomized, double-blind, placebo-controlled, crossover cohort study. Intensive Care Med. 44, 2048–2058 (2018). This study shows that with increasing duration of critical illness, the ACTH responses to CRH become suppressed, which is compatible with feedback inhibition exerted by cortisol that is elevated through peripheral rather than central drivers.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Annane, D. et al. Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a multispecialty task force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Crit. Care Med. 45, 2089–2098 (2017).

    PubMed  Google Scholar 

  14. Annane, D. et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Intensive Care Med. 43, 1751–1763 (2017). This paper presents updated guidelines for the diagnosis and management of CIRCI.

    PubMed  Google Scholar 

  15. McIntosh, T. K. et al. Circadian rhythm of cortisol is altered in postsurgical patients. J. Clin. Endocrinol. Metab. 53, 117–122 (1981).

    CAS  PubMed  Google Scholar 

  16. Mohler, J. L., Michael, K. A., Freedman, A. M., Griffen, W. O. Jr & McRoberts, J. W. The serum and urinary cortisol response to operative trauma. Surg. Gynecol. Obstet. 161, 445–449 (1985).

    CAS  PubMed  Google Scholar 

  17. Widmer, I. E. et al. Cortisol response in relation to the severity of stress and illness. J. Clin. Endocrinol. Metab. 90, 4579–4586 (2005).

    CAS  PubMed  Google Scholar 

  18. Rothwell, P. M., Udwadia, Z. F. & Lawler, P. G. Cortisol response to corticotropin and survival in septic shock. Lancet 337, 582–583 (1991).

    CAS  PubMed  Google Scholar 

  19. Dinneen, S., Alzaid, A., Miles, J. & Rizza, R. Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. J. Clin. Invest. 92, 2283–2290 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Peckett, A. J., Wright, D. C. & Riddell, M. C. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60, 1500–1510 (2011).

    CAS  PubMed  Google Scholar 

  21. Yang, S. & Zhang, L. Glucocorticoids and vascular reactivity. Curr. Vasc. Pharmacol. 2, 1–12 (2004).

    PubMed  Google Scholar 

  22. Walker, B. R. et al. 11 β-hydroxysteroid dehydrogenase in vascular smooth muscle and heart: implications for cardiovascular responses to glucocorticoids. Endocrinology 129, 3305–3312 (1991).

    CAS  PubMed  Google Scholar 

  23. Cain, D. W. & Cidlowski, J. A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 17, 233–247 (2017).

    CAS  PubMed  Google Scholar 

  24. Cooper, M. S. & Stewart, P. M. Corticosteroid insufficiency in acutely ill patients. N. Engl. J. Med. 348, 727–734 (2003).

    CAS  PubMed  Google Scholar 

  25. Rothwell, P. M. & Lawler, P. G. Prediction of outcome in intensive care patients using endocrine parameters. Crit. Care Med. 23, 78–83 (1995).

    CAS  PubMed  Google Scholar 

  26. Marana, E. et al. Neuroendocrine stress response in laparoscopic surgery for benign ovarian cyst. Can. J. Anaesth. 51, 943–944 (2004).

    PubMed  Google Scholar 

  27. Marana, E., Colicci, S., Meo, F., Marana, R. & Proietti, R. Neuroendocrine stress response in gynecological laparoscopy: TIVA with propofol versus sevoflurane anesthesia. J. Clin. Anesth 22, 250–255 (2010).

    CAS  PubMed  Google Scholar 

  28. Gibbison, B. et al. Dynamic pituitary-adrenal interactions in response to cardiac surgery. Crit. Care Med. 43, 791–800 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cooper, C. E. & Nelson, D. H. Acth levels in plasma in preoperative and surgically stressed patients. J. Clin. Invest. 41, 1599–1605 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chrousos, G. P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 332, 1351–1362 (1995).

    CAS  PubMed  Google Scholar 

  31. Vermes, I., Beishuizen, A., Hampsink, R. M. & Haanen, C. Dissociation of plasma adrenocorticotropin and cortisol levels in critically ill patients: possible role of endothelin and atrial natriuretic hormone. J. Clin. Endocrinol. Metab. 80, 1238–1242 (1995).

    CAS  PubMed  Google Scholar 

  32. Bornstein, S. R. et al. The role of toll-like receptors in the immune-adrenal crosstalk. Ann. NY Acad. Sci. 1088, 307–318 (2006).

    CAS  PubMed  Google Scholar 

  33. Kanczkowski, W. et al. Hypothalamo-pituitary and immune-dependent adrenal regulation during systemic inflammation. Proc. Natl Acad. Sci. USA 110, 14801–14806 (2013).

    CAS  PubMed  Google Scholar 

  34. Drucker, D. & Shandling, M. Variable adrenocortical function in acute medical illness. Crit. Care Med. 13, 477–479 (1985).

    CAS  PubMed  Google Scholar 

  35. Roth-Isigkeit, A. K. & Schmucker, P. Postoperative dissociation of blood levels of cortisol and adrenocorticotropin after coronary artery bypass grafting surgery. Steroids 62, 695–699 (1997).

    CAS  PubMed  Google Scholar 

  36. Veldhuis, J. D., Keenan, D. M. & Pincus, S. M. Motivations and methods for analyzing pulsatile hormone secretion. Endocr. Rev. 29, 823–864 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Henley, D., Lightman, S. & Carrell, R. Cortisol and CBG — getting cortisol to the right place at the right time. Pharmacol. Ther. 166, 128–135 (2016).

    CAS  PubMed  Google Scholar 

  38. Pemberton, P. A., Stein, P. E., Pepys, M. B., Potter, J. M. & Carrell, R. W. Hormone binding globulins undergo serpin conformational change in inflammation. Nature 336, 257–258 (1988).

    CAS  PubMed  Google Scholar 

  39. Coolens, J. L., Van Baelen, H. & Heyns, W. Clinical use of unbound plasma cortisol as calculated from total cortisol and corticosteroid-binding globulin. J. Steroid Biochem. 26, 197–202 (1987).

    CAS  PubMed  Google Scholar 

  40. Faix, J. D. Principles and pitfalls of free hormone measurements. Best Pract. Res. Clin. Endocrinol. Metab. 27, 631–645 (2013).

    CAS  PubMed  Google Scholar 

  41. Vanhorebeek, I. et al. Cortisol response to critical illness: effect of intensive insulin therapy. J. Clin. Endocrinol. Metab. 91, 3803–3813 (2006).

    CAS  PubMed  Google Scholar 

  42. Redelmeier, D. A. New thinking about postoperative hypoalbuminemia: a hypothesis of occult protein-losing enteropathy. Open Med. 3, e215–e219 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Vincent, J. L. et al. Albumin administration in the acutely ill: what is new and where next? Crit. Care 18, 231 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Moshage, H. J., Janssen, J. A., Franssen, J. H., Hafkenscheid, J. C. & Yap, S. H. Study of the molecular mechanism of decreased liver synthesis of albumin in inflammation. J. Clin. Invest. 79, 1635–1641 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Barle, H. et al. Synthesis rates of total liver protein and albumin are both increased in patients with an acute inflammatory response. Clin. Sci. 110, 93–99 (2006).

    CAS  PubMed  Google Scholar 

  46. Nenke, M. A. et al. Depletion of high-affinity corticosteroid-binding globulin corresponds to illness severity in sepsis and septic shock; clinical implications. Clin. Endocrinol. (Oxf.) 82, 801–807 (2015).

    CAS  Google Scholar 

  47. Emptoz-Bonneton, A., Crave, J. C., LeJeune, H., Brebant, C. & Pugeat, M. Corticosteroid-binding globulin synthesis regulation by cytokines and glucocorticoids in human hepatoblastoma-derived (HepG2) cells. J. Clin. Endocrinol. Metab. 82, 3758–3762 (1997).

    CAS  PubMed  Google Scholar 

  48. Jenniskens, M. et al. The hepatic glucocorticoid receptor is crucial for cortisol homeostasis and sepsis survival in humans and male mice. Endocrinology 159, 2790–2802 (2018). This study proposes the hepatic glucocorticoid receptor as a new central player in controlling cortisol availability, inflammation and survival from sepsis-induced critical illness.

    PubMed  Google Scholar 

  49. Hamrahian, A. H., Oseni, T. S. & Arafah, B. M. Measurements of serum free cortisol in critically ill patients. N. Engl. J. Med. 350, 1629–1638 (2004).

    CAS  PubMed  Google Scholar 

  50. Chan, W. L., Carrell, R. W., Zhou, A. & Read, R. J. How changes in affinity of corticosteroid-binding globulin modulate free cortisol concentration. J. Clin. Endocrinol. Metab. 98, 3315–3322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tomlinson, J. W. & Stewart, P. M. Cortisol metabolism and the role of 11β-hydroxysteroid dehydrogenase. Best Pract. Res. Clin. Endocrinol. Metab. 15, 61–78 (2001).

    CAS  PubMed  Google Scholar 

  52. Tomlinson, J. W. et al. 11β-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr. Rev. 25, 831–866 (2004).

    CAS  PubMed  Google Scholar 

  53. Nixon, M., Upreti, R. & Andrew, R. 5α-reduced glucocorticoids: a story of natural selection. J. Endocrinol. 212, 111–127 (2012).

    CAS  PubMed  Google Scholar 

  54. Langlois, V. S., Zhang, D., Cooke, G. M. & Trudeau, V. L. Evolution of steroid-5α-reductases and comparison of their function with 5β-reductase. Gen. Comp. Endocrinol. 166, 489–497 (2010).

    CAS  PubMed  Google Scholar 

  55. Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).

    CAS  PubMed  Google Scholar 

  56. Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).

    CAS  PubMed  Google Scholar 

  57. Zhu, C., Fuchs, C. D., Halilbasic, E. & Trauner, M. Bile acids in regulation of inflammation and immunity: friend or foe? Clin. Exp. Rheumatol. 34, 25–31 (2016).

    PubMed  Google Scholar 

  58. Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).

    CAS  PubMed  Google Scholar 

  59. McNeilly, A. D. et al. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice. J. Hepatol. 52, 705–711 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ackermann, D. et al. Inhibition of 11β-hydroxysteroid dehydrogenase by bile acids in rats with cirrhosis. Hepatology 30, 623–629 (1999).

    CAS  PubMed  Google Scholar 

  61. Jenniskens, M., Langouche, L., Vanwijngaerden, Y. M., Mesotten, D. & Van den Berghe, G. Cholestatic liver (dys)function during sepsis and other critical illnesses. Intensive Care Med. 42, 16–27 (2016).

    CAS  PubMed  Google Scholar 

  62. Rose, A. J. et al. Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor. Cell Metab. 14, 123–130 (2011).

    CAS  PubMed  Google Scholar 

  63. Rosales, R. et al. FXR-dependent and -independent interaction of glucocorticoids with the regulatory pathways involved in the control of bile acid handling by the liver. Biochem. Pharmacol. 85, 829–838 (2013).

    CAS  PubMed  Google Scholar 

  64. Kino, T. & Chrousos, G. P. Glucocorticoid and mineralocorticoid receptors and associated diseases. Essays Biochem. 40, 137–155 (2004).

    CAS  PubMed  Google Scholar 

  65. Jaaskelainen, T., Makkonen, H. & Palvimo, J. J. Steroid up-regulation of FKBP51 and its role in hormone signaling. Curr. Opin. Pharmacol. 11, 326–331 (2011).

    PubMed  Google Scholar 

  66. Pratt, W. B. & Toft, D. O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306–360 (1997).

    CAS  PubMed  Google Scholar 

  67. Picard, D., Salser, S. J. & Yamamoto, K. R. A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell 54, 1073–1080 (1988).

    CAS  PubMed  Google Scholar 

  68. Lu, N. Z. & Cidlowski, J. A. Glucocorticoid receptor isoforms generate transcription specificity. Trends Cell Biol. 16, 301–307 (2006).

    CAS  PubMed  Google Scholar 

  69. Luisi, B. F. et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352, 497–505 (1991).

    CAS  PubMed  Google Scholar 

  70. Ratman, D. et al. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol. Cell Endocrinol. 380, 41–54 (2013).

    CAS  PubMed  Google Scholar 

  71. Diamond, M. I., Miner, J. N., Yoshinaga, S. K. & Yamamoto, K. R. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249, 1266–1272 (1990).

    CAS  PubMed  Google Scholar 

  72. Boldizsar, F. et al. Emerging pathways of non-genomic glucocorticoid (GC) signalling in T cells. Immunobiology 215, 521–526 (2010).

    CAS  PubMed  Google Scholar 

  73. Guerrero, J., Gatica, H. A., Rodriguez, M., Estay, R. & Goecke, I. A. Septic serum induces glucocorticoid resistance and modifies the expression of glucocorticoid isoforms receptors: a prospective cohort study and in vitro experimental assay. Crit. Care 17, R107 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. Abraham, M. N., Jimenez, D. M., Fernandes, T. D. & Deutschman, C. S. Cecal ligation and puncture alters glucocorticoid receptor expression. Crit. Care Med. 46, e797–e804 (2018).

    CAS  PubMed  Google Scholar 

  75. van den Akker, E. L. et al. Glucocorticoid receptor mRNA levels are selectively decreased in neutrophils of children with sepsis. Intensive Care Med. 35, 1247–1254 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vardas, K. et al. Increased glucocorticoid receptor expression in sepsis is related to heat shock proteins, cytokines, and cortisol and is associated with increased mortality. Intensive Care Med. Exp. 5, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Peeters, B., Langouche, L. & Van den Berghe, G. Adrenocortical stress response during the course of critical illness. Compr. Physiol. 8, 283–298 (2017).

    PubMed  Google Scholar 

  78. McMillin, M. et al. Suppression of the HPA axis during cholestasis can be attributed to hypothalamic bile acid signaling. Mol. Endocrinol. 29, 1720–1730 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Miura, T. et al. Functional modulation of the glucocorticoid receptor and suppression of NF-kappaB-dependent transcription by ursodeoxycholic acid. J. Biol. Chem. 276, 47371–47378 (2001).

    CAS  PubMed  Google Scholar 

  80. Polito, A. et al. Changes in CRH and ACTH synthesis during experimental and human septic shock. PLOS ONE 6, e25905 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Annane, D. The role of ACTH and corticosteroids for sepsis and septic shock: an update. Front. Endocrinol. (Lausanne) 7, 70 (2016).

    Google Scholar 

  82. Charmandari, E., Nicolaides, N. C. & Chrousos, G. P. Adrenal insufficiency. Lancet 383, 2152–2167 (2014).

    CAS  PubMed  Google Scholar 

  83. Betterle, C. & Morlin, L. Autoimmune Addison’s disease. Endocr. Dev. 20, 161–172 (2011).

    CAS  PubMed  Google Scholar 

  84. Laureti, S. et al. Levels of adrenocortical autoantibodies correlate with the degree of adrenal dysfunction in subjects with preclinical Addison’s disease. J. Clin. Endocrinol. Metab. 83, 3507–3511 (1998).

    CAS  PubMed  Google Scholar 

  85. Tomlinson, J. W. et al. Association between premature mortality and hypopituitarism. West Midlands Prospective Hypopituitary Study Group. Lancet 357, 425–431 (2001).

    CAS  PubMed  Google Scholar 

  86. Erichsen, M. M. et al. Clinical, immunological, and genetic features of autoimmune primary adrenal insufficiency: observations from a Norwegian registry. J. Clin. Endocrinol. Metab. 94, 4882–4890 (2009).

    CAS  PubMed  Google Scholar 

  87. McDonough, A. K., Curtis, J. R. & Saag, K. G. The epidemiology of glucocorticoid-associated adverse events. Curr. Opin. Rheumatol. 20, 131–137 (2008).

    PubMed  Google Scholar 

  88. Jurney, T. H. et al. Spectrum of serum cortisol response to ACTH in ICU patients. Correlation with degree of illness and mortality. Chest 92, 292–295 (1987).

    CAS  PubMed  Google Scholar 

  89. Washburn, R. G. & Bennett, J. E. Reversal of adrenal glucocorticoid dysfunction in a patient with disseminated histoplasmosis. Ann. Intern. Med. 110, 86–87 (1989).

    CAS  PubMed  Google Scholar 

  90. Bhatia, E., Jain, S. K., Gupta, R. K. & Pandey, R. Tuberculous Addison’s disease: lack of normalization of adrenocortical function after anti-tuberculous chemotherapy. Clin. Endocrinol. (Oxf.) 48, 355–359 (1998).

    CAS  Google Scholar 

  91. Waterhouse, R. A case of suprarenal apoplexy. Lancet 177, 577–578 (1911).

    Google Scholar 

  92. Friderichsen, C. Nebennierenapoplexie bei kleinen kindern [German]. Jahrb Kinderheilk. 87, 109–125 (1918).

    Google Scholar 

  93. Krahulik, D., Zapletalova, J., Frysak, Z. & Vaverka, M. Dysfunction of hypothalamic-hypophysial axis after traumatic brain injury in adults. J. Neurosurg. 113, 581–584 (2010).

    PubMed  Google Scholar 

  94. Agha, A. et al. Anterior pituitary dysfunction in survivors of traumatic brain injury. J. Clin. Endocrinol. Metab. 89, 4929–4936 (2004).

    CAS  PubMed  Google Scholar 

  95. Tanriverdi, F. et al. Prospective investigation of pituitary functions in patients with acute infectious meningitis: is acute meningitis induced pituitary dysfunction associated with autoimmunity? Pituitary 15, 579–588 (2012).

    CAS  PubMed  Google Scholar 

  96. Giese, J. L. & Stanley, T. H. Etomidate: a new intravenous anesthetic induction agent. Pharmacotherapy 3, 251–258 (1983).

    CAS  PubMed  Google Scholar 

  97. Watt, I. & Ledingham, I. M. Mortality amongst multiple trauma patients admitted to an intensive therapy unit. Anaesthesia 39, 973–981 (1984).

    CAS  PubMed  Google Scholar 

  98. Wagner, R. L., White, P. F., Kan, P. B., Rosenthal, M. H. & Feldman, D. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N. Engl. J. Med. 310, 1415–1421 (1984).

    CAS  PubMed  Google Scholar 

  99. Loose, D. S., Kan, P. B., Hirst, M. A., Marcus, R. A. & Feldman, D. Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J. Clin. Invest. 71, 1495–1499 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Weber, M. M. et al. Different inhibitory effect of etomidate and ketoconazole on the human adrenal steroid biosynthesis. Clin. Investig. 71, 933–938 (1993).

    CAS  PubMed  Google Scholar 

  101. Brorsson, C. et al. Adrenal response after trauma is affected by time after trauma and sedative/analgesic drugs. Injury 45, 1149–1155 (2014).

    PubMed  Google Scholar 

  102. Lamberts, S. W., Bruining, H. A. & de Jong, F. H. Corticosteroid therapy in severe illness. N. Engl. J. Med. 337, 1285–1292 (1997).

    CAS  PubMed  Google Scholar 

  103. Baldwin, W. A. & Allo, M. Occult hypoadrenalism in critically ill patients. Arch. Surg. 128, 673–676 (1993).

    CAS  PubMed  Google Scholar 

  104. Salem, M. et al. Perioperative glucocorticoid coverage. A reassessment 42 years after emergence of a problem. Ann. Surg. 219, 416–425 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Annane, D. et al. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 283, 1038–1045 (2000). This study is the first to postulate that relative adrenal failure is indicated by a low increment in total plasma cortisol (<9μgdl–1) after a 250μg ACTH stimulation test.

    CAS  PubMed  Google Scholar 

  106. Annane, D. et al. Impaired pressor sensitivity to noradrenaline in septic shock patients with and without impaired adrenal function reserve. Br. J. Clin. Pharmacol. 46, 589–597 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Marik, P. E. et al. Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit. Care Med. 36, 1937–1949 (2008).

    CAS  PubMed  Google Scholar 

  108. Meduri, G. U., Muthiah, M. P., Carratu, P., Eltorky, M. & Chrousos, G. P. Nuclear factor-κB- and glucocorticoid receptor α- mediated mechanisms in the regulation of systemic and pulmonary inflammation during sepsis and acute respiratory distress syndrome. Evidence for inflammation-induced target tissue resistance to glucocorticoids. Neuroimmunomodulation 12, 321–338 (2005).

    PubMed  Google Scholar 

  109. Meduri, G. U. & Yates, C. R. Systemic inflammation-associated glucocorticoid resistance and outcome of ARDS. Ann. NY Acad. Sci. 1024, 24–53 (2004).

    CAS  PubMed  Google Scholar 

  110. Bergquist, M. et al. Glucocorticoid receptor function is decreased in neutrophils during endotoxic shock. J. Infect. 69, 113–122 (2014).

    PubMed  Google Scholar 

  111. Cvijanovich, N. Z. et al. Glucocorticoid receptor polymorphisms and outcomes in pediatric septic shock. Pediatr. Crit. Care Med. 18, 299–303 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Ledderose, C. et al. Corticosteroid resistance in sepsis is influenced by microRNA-124 — induced downregulation of glucocorticoid receptor-α. Crit. Care Med. 40, 2745–2753 (2012).

    CAS  PubMed  Google Scholar 

  113. Annane, D. et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288, 862–871 (2002). This RCT is the first to document a mortality benefit of glucocorticoid treatment of patients with septic shock.

    CAS  PubMed  Google Scholar 

  114. Annane, D. et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N. Engl. J. Med. 378, 809–818 (2018).

    CAS  PubMed  Google Scholar 

  115. Venkatesh, B. et al. Adjunctive glucocorticoid therapy in patients with septic shock. N. Engl. J. Med. 378, 797–808 (2018). This study is currently the largest RCT to investigate the impact on outcome of glucocorticoid treatment of patients with septic shock and does not find a mortality benefit.

    CAS  PubMed  Google Scholar 

  116. Sprung, C. L. et al. Hydrocortisone therapy for patients with septic shock. N. Engl. J. Med. 358, 111–124 (2008).

    CAS  PubMed  Google Scholar 

  117. Gunst, J. & Van den Berghe, G. Glucocorticoids with or without fludrocortisone in septic shock. N. Engl. J. Med. 379, 894 (2018).

    PubMed  Google Scholar 

  118. The COIITSS Study Investigators. et al. Corticosteroid treatment and intensive insulin therapy for septic shock in adults: a randomized controlled trial. JAMA 303, 341–348 (2010).

    Google Scholar 

  119. Antcliffe, D. B. et al. Transcriptomic signatures in sepsis and a differential response to steroids: from the VANISH randomized trial. Am. J. Respir. Crit. Care Med. https://doi.org/10.1164/rccm.201807-1419OC (2018).

    Article  Google Scholar 

  120. Wong, H. R. et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am. J. Respir. Crit. Care Med. 191, 309–315 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Rochwerg, B. et al. Corticosteroids in sepsis: an updated systematic review and meta-analysis. Crit. Care Med. 46, 1411–1420 (2018).

    CAS  PubMed  Google Scholar 

  122. Lamontagne, F. et al. Corticosteroid therapy for sepsis: a clinical practice guideline. BMJ 362, k3284 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Gomez, M. T., Magiakou, M. A., Mastorakos, G. & Chrousos, G. P. The pituitary corticotroph is not the rate limiting step in the postoperative recovery of the hypothalamic-pituitary-adrenal axis in patients with Cushing syndrome. J. Clin. Endocrinol. Metab. 77, 173–177 (1993).

    CAS  PubMed  Google Scholar 

  124. Coll, A. P. et al. The effects of proopiomelanocortin deficiency on murine adrenal development and responsiveness to adrenocorticotropin. Endocrinology 145, 4721–4727 (2004).

    CAS  PubMed  Google Scholar 

  125. Boonen, E. et al. Impact of duration of critical illness on the adrenal glands of human intensive care patients. J. Clin. Endocrinol. Metab. 99, 4214–4222 (2014).

    CAS  PubMed  Google Scholar 

  126. Marik, P. E. The role of glucocorticoids as adjunctive treatment for sepsis in the modern era. Lancet Respir. Med. 6, 793–800 (2018).

    CAS  PubMed  Google Scholar 

  127. Verstraete, S. et al. Long-term developmental effects of withholding parenteral nutrition for 1 week in the paediatric intensive care unit: a 2-year follow-up of the PEPaNIC international, randomised, controlled trial. Lancet Respir. Med. 7, 141–153 (2018).

    PubMed  Google Scholar 

  128. Bone, R. C. et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101, 1644–1655 (1992).

    CAS  PubMed  Google Scholar 

  129. Vincent, J. L. et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit. Care Med. 26, 1793–1800 (1998).

    CAS  PubMed  Google Scholar 

  130. Singer, M. et al. The Third International Consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801–810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Rhodes, A. et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Crit. Care Med. 45, 486–552 (2017).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Research Foundation-Flanders (FWO) (grant G091918N to G.V.d.B.), which was awarded by the Methusalem Program of the Flemish Government (METH/14/06 to G.V.d.B. and L.L. via KU Leuven), and of a European Research Council Advanced Grant [AdvG-2017-785809 to G.V.d.B.], which was awarded from the European Union’s Horizon 2020 research and innovation programme.

Reviewer information

Nature Reviews Endocrinology thanks M. Christ-Crain, I. Dimopoulou and P. Marik for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

G.V.d.B., A.T., B.P. and L.L. researched data for the article, provided substantial contribution to the discussion of content and reviewed and edited the manuscript before submission. G.V.d.B., A.T. and L.L. wrote the article.

Corresponding author

Correspondence to Greet Van den Berghe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Critical illness

Any trauma or disease leading to life-threatening organ dysfunction that requires mechanical or pharmacological support to prevent imminent death.

Fluid resuscitation

The administration of intravenous fluids during the first hours after onset of sepsis with the aim to stabilize and/or reverse sepsis-induced tissue hypoperfusion and prevent evolution to septic shock.

Neutrophil elastase

A serine protease that is secreted by immune cells, such as activated neutrophils, during inflammation. This enzyme hydrolyses a broad range of proteins, including cortisol-binding globulin (CBG).

Glucocorticoid resistance

A decrease in the cellular response to endogenous or exogenous glucocorticoids.

Waterhouse–Friderichsen syndrome

A life-threatening acute adrenal haemorrhage that leads to adrenal failure, which is caused by severe bacterial infections, most often involving meningococci or streptococci.

Stress dose

The pharmacological dose of glucocorticoids that was, until recently, assumed to be necessary to meet the cortisol demands of patients with critical illnesses.

Cortisol distribution volume

The theoretical volume in which a known amount of cortisol is dissolved to bring about a specific plasma concentration. In healthy individuals, >90% of plasma cortisol is protein-bound, which limits the distribution volume of cortisol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Téblick, A., Peeters, B., Langouche, L. et al. Adrenal function and dysfunction in critically ill patients. Nat Rev Endocrinol 15, 417–427 (2019). https://doi.org/10.1038/s41574-019-0185-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0185-7

  • Springer Nature Limited

This article is cited by

Navigation