Skip to main content
Log in

Recent advances in visible light-induced C(sp3)–N bond formation

  • Review Article
  • Published:

From Nature Reviews Chemistry

View current issue Sign up to alerts

Abstract

Synthetic chemists have long focused on selective C(sp3)–N bond-forming approaches in response to the high value of this motif in natural products, pharmaceutical agents and functional materials. In recent years, visible light-induced protocols have become an important synthetic platform to promote this transformation under mild reaction conditions. These photo-driven methods rely on converting visible light into chemical energy to generate reactive but controllable radical species. This Review highlights recent advances in this area, mostly after 2014, with an emphasis placed on C(sp3)–H bond activations, including amination of olefins and carbonyl compounds, and cross-coupling reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Generalized approaches for the visible light-induced formation of C(sp3)–N bonds.
Fig. 2: Transition metal-free C(sp3)–H amination.
Fig. 3: Transition metal-catalysed amination of C(sp3)–H.
Fig. 4: Photoinduced intermolecular amination of olefins and strained systems.
Fig. 5: Intramolecular synthesis of five-membered and six-membered azaheterocycles from alkenes.
Fig. 6: Reductive amination of carbonyl compounds and direct α-amination of carbonyl compounds and their enol derivatives.
Fig. 7: Cross-couplings.

Similar content being viewed by others

References

  1. Bhunia, S., Pawar, G. G., Kumar, S. V., Jiang, Y. & Ma, D. Selected copper-based reactions for C−N, C−O, C−S, and C−C bond formation. Angew. Chem. Int. Ed. 56, 16136–16179 (2017).

    Article  CAS  Google Scholar 

  2. Lin, H. & Sun, D. Recent synthetic developments and applications of the Ullmann reaction. A review. Org. Prep. Proced. Int. 45, 341–394 (2013).

    Article  CAS  Google Scholar 

  3. Sambiagio, C., Marsden, S. P., Blacker, A. J. & McGowan, P. C. Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chem. Soc. Rev. 43, 3525–3550 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. West, M. J., Fyfe, J. W. B., Vantourout, J. C. & Watson, A. J. B. Mechanistic development and recent applications of the Chan–Lam amination. Chem. Rev. 119, 12491–12523 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Dorel, R., Grugel, C. P. & Haydl, A. M. The Buchwald–Hartwig amination after 25 years. Angew. Chem. Int. Ed. 58, 17118–17129 (2019).

    Article  CAS  Google Scholar 

  6. Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C−N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heravi, M. M., Kheilkordi, Z., Zadsirjan, V., Heydari, M. & Malmir, M. Buchwald–Hartwig reaction: an overview. J. Organomet. Chem. 861, 17–104 (2018).

    Article  CAS  Google Scholar 

  8. Trowbridge, A., Walton, S. M. & Gaunt, M. J. New strategies for the transition-metal catalyzed synthesis of aliphatic amines. Chem. Rev. 120, 2613–2692 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C−H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Leitch, J. A., Rossolini, T., Rogova, T., Maitland, J. A. P. & Dixon, D. J. α-Amino radicals via photocatalytic single-electron reduction of imine derivatives. ACS Catal. 10, 2009–2025 (2020).

    Article  CAS  Google Scholar 

  11. Guo, X., Okamoto, Y., Schreier, M. R., Ward, T. R. & Wenger, O. S. Reductive amination and enantioselective amine synthesis by photoredox catalysis. Eur. J. Org. Chem. 2020, 1288–1293 (2020).

    Article  CAS  Google Scholar 

  12. Wei, Y., Zhou, Q. Q., Tan, F., Lu, L. Q. & Xiao, W. J. Visible-light-driven organic photochemical reactions in the absence of external photocatalysts. Synthesis 51, 3021–3054 (2019).

    Article  CAS  Google Scholar 

  13. Zhang, H. & Lei, A. Electrochemical/photochemical aminations based on oxidative cross-coupling between C–H and N–H. Synthesis 51, 83–96 (2018).

    Google Scholar 

  14. Kärkäs, M. D. Photochemical generation of nitrogen-centered amidyl, hydrazonyl, and imidyl radicals: methodology developments and catalytic applications. ACS Catal. 7, 4999–5022 (2017).

    Article  CAS  Google Scholar 

  15. Xiong, T. & Zhang, Q. New amination strategies based on nitrogen-centered radical chemistry. Chem. Soc. Rev. 45, 3069–3087 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, Y. & Xia, W. Recent advances in radical-based C−N bond formation via photo-/electrochemistry. Chem. Soc. Rev. 47, 2591–2608 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Revathi, L., Ravindar, L., Fang, W. Y., Rakesh, K. P. & Qin, H. L. Visible light-induced C−H bond functionalization: a critical review. Adv. Synth. Catal. 360, 4652–4698 (2018).

    Article  CAS  Google Scholar 

  18. Chan, C. M., Chow, Y. C. & Yu, W. Y. Recent advances in photocatalytic C−N bond coupling reactions. Synthesis 52, 2899–2921 (2020).

    CAS  Google Scholar 

  19. Singh, S., Roy, V. J., Dagar, N., Sen, P. P. & Roy, S. R. Photocatalysis in dual catalysis systems for carbon–nitrogen bond formation. Adv. Synth. Catal. 363, 937–979 (2020).

    Article  CAS  Google Scholar 

  20. Kwon, K., Simons, R. T., Nandakumar, M. & Roizen, J. L. Strategies to generate nitrogen-centered radicals that may rely on photoredox catalysis: development in reaction methodology and applications in organic synthesis. Chem. Rev. 122, 2353–2428 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Yi, H. et al. Recent advances in radical C−H activation/radical cross-coupling. Chem. Rev. 117, 9016–9085 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Heusler, K. & Kalvoda, J. Intramolecular free-radical reactions. Angew. Chem. Int. Ed. 3, 525–538 (1964).

    Article  Google Scholar 

  23. Breslow, R. Centenary lecture — biomimetic chemistry. Chem. Soc. Rev. 1, 553–580 (1972).

    Article  CAS  Google Scholar 

  24. Majetich, G. Remote intramolecular free-radical functionalizations — an update. Tetrahedron 51, 7095–7129 (1995).

    Article  CAS  Google Scholar 

  25. Stateman, L. M., Nakafuku, K. M. & Nagib, D. A. Remote C−H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luo, J. F. & Wei, W. T. Recent advances in the construction of C−N bonds through coupling reactions between carbon radicals and nitrogen radicals. Adv. Synth. Catal. 360, 2076–2086 (2018).

    Article  CAS  Google Scholar 

  27. Chen, J.-Y., Wu, W., Li, Q. & Wei, W.-T. Visible-light induced C(sp3)–H functionalization for the formation of C−N bonds under metal catalyst-free conditions. Adv. Synth. Catal. 362, 2770–2777 (2020).

    Article  CAS  Google Scholar 

  28. Hofmann, A. W. Ueber die einwirkung des broms in alkalischer lösung auf die amine [German]. Ber. Dtsch. Chem. Ges. 16, 558–560 (1883).

    Article  Google Scholar 

  29. Löffler, K. & Freytag, C. Über eine neue bildungsweise von N-alkylierten pyrrolidinen [German]. Ber. Dtsch. Chem. Ges. 42, 3427–3431 (1909).

    Article  Google Scholar 

  30. de Armas, P. et al. Synthesis of 1,4-epimine compounds. iodosobenzene diacetate, an efficient reagent for neutral nitrogen radical generation. Tetrahedron Lett. 26, 2493–2496 (1985).

    Article  Google Scholar 

  31. Hernández, R., Rivera, A., Salazar, J. A. & Suárez, E. Nitroamine radicals as intermediates in the functionalization of non-activated carbon atoms. Chem. Commun. 20, 958–959 (1980).

    Article  Google Scholar 

  32. Betancor, C., Concepcion, J. I., Hernandez, R., Salazar, J. A. & Suarez, E. Intramolecular functionalization of nonactivated carbons by amidylphosphate radicals. Synthesis of 1,4-epimine compounds. J. Org. Chem. 48, 4430–4432 (2002).

    Article  Google Scholar 

  33. Carrau, R., Hernández, R., Suárez, E. & Betancor, C. Intramolecular functionalization of N-cyanamide radicals: synthesis of 1,4-and 1,5-N-cyanoepimino compounds. J. Chem. Soc. Perkin Trans. 1, 937–943 (1987).

    Article  Google Scholar 

  34. de Armas, P., Francisco, C. G., Hernández, R., Salazar, J. A. & Suárez, E. Steroidal N-nitroamines. Part 4. Intramolecular functionalization of N-nitroamine radicals: synthesis of 1,4-nitroimine compounds. J. Chem. Soc. Perkin Trans. 1, 3255–3265 (1988).

    Article  Google Scholar 

  35. Fan, R., Pu, D., Wen, F. & Wu, J. δ- and α-sp3 C−H bond oxidation of sulfonamides with PhI(OAc)2/I2 under metal-free conditions. J. Org. Chem. 72, 8994–8997 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Paz, N. R. et al. Chemoselective intramolecular functionalization of methyl groups in nonconstrained molecules promoted by N-iodosulfonamides. Org. Lett. 17, 2370–2373 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Martinez, C. & Muniz, K. An iodine-catalyzed Hofmann–Löffler reaction. Angew. Chem. Int. Ed. 54, 8287–8291 (2015).

    Article  CAS  Google Scholar 

  38. Kanyiva, K. S., Tane, M. & Shibata, T. Iodine-catalyzed synthesis of chiral 4-imidazolidinones using α-amino acid derivatives via dehydrogenative N−H/C(sp3)−H coupling. J. Org. Chem. 84, 12773–12783 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Becker, P., Duhamel, T., Stein, C. J., Reiher, M. & Muniz, K. Cooperative light-activated iodine and photoredox catalysis for the amination of C(sp3)–H bonds. Angew. Chem. Int. Ed. 56, 8004–8008 (2017).

    Article  CAS  Google Scholar 

  40. Wang, F. & Stahl, S. S. Merging photochemistry with electrochemistry: functional-group tolerant electrochemical amination of C(sp3)−H bonds. Angew. Chem. Int. Ed. 58, 6385–6390 (2019).

    Article  CAS  Google Scholar 

  41. Duhamel, T., Martinez, M. D., Sideri, I. K. & Muniz, K. 1,3-Diamine formation from an interrupted Hofmann–Löffler reaction: iodine catalyst turnover through Ritter-type amination. ACS Catal. 9, 7741–7745 (2019).

    Article  CAS  Google Scholar 

  42. Wappes, E. A., Fosu, S. C., Chopko, T. C. & Nagib, D. A. Triiodide-mediated δ-amination of secondary C−H bonds. Angew. Chem. Int. Ed. 55, 9974–9978 (2016).

    Article  CAS  Google Scholar 

  43. Wappes, E. A., Nakafuku, K. M. & Nagib, D. A. Directed β-C−H amination of alcohols via radical relay chaperones. J. Am. Chem. Soc. 139, 10204–10207 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao, R., Fu, K., Fang, Y., Zhou, J. & Shi, L. Site-specific C(sp3)−H aminations of imidates and amidines enabled by covalently tethered distonic radical anions. Angew. Chem. Int. Ed. 59, 20682–20690 (2020).

    Article  CAS  Google Scholar 

  45. Kumar, Y., Jaiswal, Y. & Kumar, A. Visible-light-mediated remote γ-C(sp3)–H functionalization of alkylimidates: synthesis of 4-iodo-3,4-dihydropyrrole derivatives. Org. Lett. 20, 4964–4969 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Shaw, M. & Kumar, A. Visible-light-mediated β-C(sp3)−H amination of glycosylimidates: en route to oxazoline-fused/spiro nonclassical bicyclic sugars. Org. Lett. 21, 3108–3113 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Stateman, L. M., Wappes, E. A., Nakafuku, K. M., Edwards, K. M. & Nagib, D. A. Catalytic β-C−H amination via an imidate radical relay. Chem. Sci. 10, 2693–2699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Prusinowski, A. F., Twumasi, R. K., Wappes, E. A. & Nagib, D. A. Vicinal, double C−H functionalization of alcohols via an imidate radical-polar crossover cascade. J. Am. Chem. Soc. 142, 5429–5438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Broin, C. Q., Fernandez, P., Martinez, C. & Muniz, K. N-Iodosuccinimide-promoted Hofmann–Löffler reactions of sulfonimides under visible light. Org. Lett. 18, 436–439 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Becker, P., Duhamel, T., Martinez, C. & Muniz, K. Designing homogeneous bromine redox catalysis for selective aliphatic C–H bond functionalization. Angew. Chem. Int. Ed. 57, 5166–5170 (2018).

    Article  CAS  Google Scholar 

  51. Zhang, H. & Muñiz, K. Selective piperidine synthesis exploiting iodine-catalyzed C(sp3)–H amination under visible light. ACS Catal. 7, 4122–4125 (2017).

    Article  CAS  Google Scholar 

  52. Bosnidou, A. E. & Muniz, K. Intermolecular radical C(sp3)–H amination under iodine catalysis. Angew. Chem. Int. Ed. 58, 7485–7489 (2019).

    Article  CAS  Google Scholar 

  53. Wu, F. et al. Halogen-bond-induced consecutive C(sp3)−H aminations via hydrogen atom transfer relay strategy. Org. Lett. 22, 2135–2140 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Margrey, K. A., Czaplyski, W. L., Nicewicz, D. A. & Alexanian, E. J. A general strategy for aliphatic C–H functionalization enabled by organic photoredox catalysis. J. Am. Chem. Soc. 140, 4213–4217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qin, Q. & Yu, S. Visible-light-promoted remote C(sp3)−H amidation and chlorination. Org. Lett. 17, 1894–1897 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Guo, Q., Ren, X. & Lu, Z. Controllable intramolecular unactivated C(sp3)−H amination and oxygenation of carbamates. Org. Lett. 21, 880–884 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Nakafuku, K. M. et al. Enantioselective radical C−H amination for the synthesis of β-amino alcohols. Nat. Chem. 12, 697–704 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Guo, J. J., Hu, A. H. & Zuo, Z. W. Photocatalytic alkoxy radical-mediated transformations. Tetrahedron Lett. 59, 2103–2111 (2018).

    Article  CAS  Google Scholar 

  59. Guo, J. J. et al. Photocatalytic C−C bond cleavage and amination of cycloalkanols by cerium(III) chloride complex. Angew. Chem. Int. Ed. 55, 15319–15322 (2016).

    Article  CAS  Google Scholar 

  60. Hu, A. et al. δ-Selective functionalization of alkanols enabled by visible-light-induced ligand-to-metal charge transfer. J. Am. Chem. Soc. 140, 1612–1616 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Hu, A., Guo, J. J., Pan, H. & Zuo, Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 361, 668–672 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. An, Q. et al. Cerium-catalyzed C−H functionalizations of alkanes utilizing alcohols as hydrogen atom transfer agents. J. Am. Chem. Soc. 142, 6216–6226 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, Q. et al. Photocatalytic C−H activation and the subtle role of chlorine radical complexation in reactivity. Science 372, 847–852 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Du, Y. D., Zhou, C. Y., To, W. P., Wang, H. X. & Che, C. M. Iron porphyrin catalysed light driven C−H bond amination and alkene aziridination with organic azides. Chem. Sci. 11, 4680–4686 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tang, J. J., Yu, X., Wang, Y., Yamamoto, Y. & Bao, M. Interweaving visible-light and iron catalysis for nitrene formation and transformation with dioxazolones. Angew. Chem. Int. Ed. 60, 16426–16435 (2021).

    Article  CAS  Google Scholar 

  66. Zheng, Y. W., Narobe, R., Donabauer, K., Yakubov, S. & König, B. Copper(II)-photocatalyzed N−H alkylation with alkanes. ACS Catal. 10, 8582–8589 (2020).

    Article  CAS  Google Scholar 

  67. Cheng, Q., Chen, J., Lin, S. & Ritter, T. Allylic amination of alkenes with iminothianthrenes to afford alkyl allylamines. J. Am. Chem. Soc. 142, 17287–17293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vijay, M. et al. Stereospecific assembly of fused imidazolidines via tandem ring opening/oxidative amination of aziridines with cyclic secondary amines using photoredox catalysis. Org. Lett. 21, 7649–7654 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Miyazawa, K., Koike, T. & Akita, M. Regiospecific intermolecular aminohydroxylation of olefins by photoredox catalysis. Chem. Eur. J. 21, 11677–11680 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Miyazawa, K., Koike, T. & Akita, M. Aminohydroxylation of olefins with iminopyridinium ylides by dual Ir photocatalysis and Sc(OTf)3 catalysis. Tetrahedron 72, 7813–7820 (2016).

    Article  CAS  Google Scholar 

  71. Yu, X. L., Chen, J. R., Chen, D. Z. & Xiao, W. J. Visible-light-induced photocatalytic azotrifluoromethylation of alkenes with aryldiazonium salts and sodium triflinate. Chem. Commun. 52, 8275–8278 (2016).

    Article  CAS  Google Scholar 

  72. Patil, D. V., Si, T., Kim, H. Y. & Oh, K. Visible-light-induced photoaddition of N-nitrosoalkylamines to alkenes: one-pot tandem approach to 1,2-diamination of alkenes from secondary amines. Org. Lett. 23, 3105–3109 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Guo, W., Wang, Q. & Zhu, J. Selective 1,2-aminoisothiocyanation of 1,3-dienes under visible-light photoredox catalysis. Angew. Chem. Int. Ed. 60, 4085–4089 (2021).

    Article  CAS  Google Scholar 

  74. Wang, H., Zhang, D. & Bolm, C. Photocatalytic additions of 1-sulfoximidoyl-1,2-benziodoxoles to styrenes. Chem. Eur. J. 24, 14942–14945 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Nguyen, T. M. & Nicewicz, D. A. Anti-Markovnikov hydroamination of alkenes catalyzed by an organic photoredox system. J. Am. Chem. Soc. 135, 9588–9591 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nguyen, T. M., Manohar, N. & Nicewicz, D. A. Anti-Markovnikov hydroamination of alkenes catalyzed by a two-component organic photoredox system: direct access to phenethylamine derivatives. Angew. Chem. Int. Ed. 53, 6198–6201 (2014).

    Article  CAS  Google Scholar 

  77. Romero, N. A. & Nicewicz, D. A. Mechanistic insight into the photoredox catalysis of anti-Markovnikov alkene hydrofunctionalization reactions. J. Am. Chem. Soc. 136, 17024–17035 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Margrey, K. A. & Nicewicz, D. A. A general approach to catalytic alkene anti-Markovnikov hydrofunctionalization reactions via acridinium photoredox catalysis. Acc. Chem. Res. 49, 1997–2006 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Musacchio, A. J., Nguyen, L. Q., Beard, G. H. & Knowles, R. R. Catalytic olefin hydroamination with aminium radical cations: a photoredox method for direct C−N bond formation. J. Am. Chem. Soc. 136, 12217–12220 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Ganley, J. M., Murray, P. R. D. & Knowles, R. R. Photocatalytic generation of aminium radical cations for C–N bond formation. ACS Catal. 10, 11712–11738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Musacchio, A. J. et al. Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science 355, 727–730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miller, D. C. et al. Anti-Markovnikov hydroamination of unactivated alkenes with primary alkyl amines. J. Am. Chem. Soc. 141, 16590–16594 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu, Q., Graff, D. E. & Knowles, R. R. Intermolecular anti-Markovnikov hydroamination of unactivated alkenes with sulfonamides enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 140, 741–747 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Murray, P. R. D. et al. Photochemical and electrochemical applications of proton-coupled electron transfer in organic synthesis. Chem. Rev. 122, 2017–2291 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Nguyen, L. Q. & Knowles, R. R. Catalytic C−N bond-forming reactions enabled by proton-coupled electron transfer activation of amide N−H bonds. ACS Catal. 6, 2894–2903 (2016).

    Article  CAS  Google Scholar 

  86. Qin, Y. et al. Mechanistic investigation and optimization of photoredox anti-Markovnikov hydroamination. J. Am. Chem. Soc. 143, 10232–10242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chinn, A. J., Sedillo, K. & Doyle, A. G. Phosphine/photoredox catalyzed anti-Markovnikov hydroamination of olefins with primary sulfonamides via α-scission from phosphoranyl radicals. J. Am. Chem. Soc. 143, 18331–18338 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Jiang, H. & Studer, A. Anti-Markovnikov radical hydro- and deuteroamidation of unactivated alkenes. Chem. Eur. J. 25, 7105–7109 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Onuska, N. P. R., Schutzbach-Horton, M. E., Rosario Collazo, J. L. & Nicewicz, D. A. Anti-Markovnikov hydroazidation of activated olefins via organic photoredox catalysis. Synlett 31, 55–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Ye, Z. P. et al. Photocatalytic intermolecular anti-Markovnikov hydroamination of unactivated alkenes with N-hydroxyphthalimide. Org. Chem. Front. 8, 273–277 (2021).

    Article  CAS  Google Scholar 

  91. Taeufer, T. et al. Pyrimidopteridine-catalyzed hydroamination of stilbenes with primary amines: a dual photoredox and hydrogen atom transfer catalyst. ACS Catal. 11, 4862–4869 (2021).

    Article  CAS  Google Scholar 

  92. Xiong, Y. & Zhang, G. Visible-light-induced copper-catalyzed intermolecular Markovnikov hydroamination of alkenes. Org. Lett. 21, 7873–7877 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Gui, J. et al. Brønsted acid/visible-light-promoted Markovnikov hydroamination of vinylarenes with arylamines. Org. Biomol. Chem. 18, 956–963 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, Y., Chen, W., Wang, L. & Li, P. H. Visible-light-induced selective amination of enol ethers with N-alkoxyamides by using DDQ as a photoredox catalyst. Org. Chem. Front. 5, 3562–3566 (2018).

    Article  CAS  Google Scholar 

  95. Zhang, Y., Wang, L., Wang, Z. M. & Chen, W. DDQ-promoted direct C−H amination of ethers with N-alkoxyamides under visible-light irradiation and metal-free conditions. Tetrahedron 75, 130516 (2019).

    Article  CAS  Google Scholar 

  96. Sun, H. L., Yang, F., Ye, W. T., Wang, J. J. & Zhu, R. Dual cobalt and photoredox catalysis enabled intermolecular oxidative hydrofunctionalization. ACS Catal. 10, 4983–4989 (2020).

    Article  CAS  Google Scholar 

  97. Nakafuku, K. M., Fosu, S. C. & Nagib, D. A. Catalytic alkene difunctionalization via imidate radicals. J. Am. Chem. Soc. 140, 11202–11205 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, Z., Ngo, D. T. & Nagib, D. A. Regioselective radical amino-functionalizations of allyl alcohols via dual catalytic cross-coupling. ACS Catal. 11, 3473–3477 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gao, Q. S. et al. Photoredox generation of N-centered hydrazonyl radicals enables the construction of dihydropyrazole-fused gem-difluoroalkenes. Org. Lett. 23, 6153–6157 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Zhou, Z., Li, Y., Han, B., Gong, L. & Meggers, E. Enantioselective catalytic β-amination through proton-coupled electron transfer followed by stereocontrolled radical–radical coupling. Chem. Sci. 8, 5757–5763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hyster, T. et al. Using enzymes to tame nitrogen-centered radicals for enantioselective hydroamination. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2021-t85fh (2021).

    Article  Google Scholar 

  102. Scholz, S. O., Farney, E. P., Kim, S., Bates, D. M. & Yoon, T. P. Spin-selective generation of triplet nitrenes: olefin aziridination through visible-light photosensitization of azidoformates. Angew. Chem. Int. Ed. 55, 2239–2242 (2016).

    Article  CAS  Google Scholar 

  103. Zhang, Y., Dong, X., Wu, Y., Li, G. & Lu, H. Visible-light-induced intramolecular C(sp2)−H amination and aziridination of azidoformates via a triplet nitrene pathway. Org. Lett. 20, 4838–4842 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Yu, W. L., Chen, J. Q., Wei, Y. L., Wang, Z. Y. & Xu, P. F. Alkene functionalization for the stereospecific synthesis of substituted aziridines by visible-light photoredox catalysis. Chem. Commun. 54, 1948–1951 (2018).

    Article  CAS  Google Scholar 

  105. Chemler, S. R. & Bovino, M. T. Catalytic aminohalogenation of alkenes and alkynes. ACS Catal. 3, 1076–1091 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Qin, Q., Ren, D. & Yu, S. Visible-light-promoted chloramination of olefins with N-chlorosulfonamide as both nitrogen and chlorine sources. Org. Biomol. Chem. 13, 10295–10298 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Song, L., Luo, S. Z. & Cheng, J. P. Visible-light promoted intermolecular halofunctionalization of alkenes with N-halogen saccharins. Org. Chem. Front. 3, 447–452 (2016).

    Article  CAS  Google Scholar 

  108. Mo, J. N., Yu, W. L., Chen, J. Q., Hu, X. Q. & Xu, P. F. Regiospecific three-component aminofluorination of olefins via photoredox catalysis. Org. Lett. 20, 4471–4474 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, C., Tu, Y., Ma, D. & Bolm, C. Photocatalytic fluoro sulfoximidations of styrenes. Angew. Chem. Int. Ed. 59, 14134–14137 (2020).

    Article  CAS  Google Scholar 

  110. Govaerts, S. et al. Photoinduced olefin diamination with alkylamines. Angew. Chem. Int. Ed. 59, 15021–15028 (2020).

    Article  CAS  Google Scholar 

  111. Wang, P., Luo, Y. X., Zhu, S. S., Lu, D. F. & Gong, Y. F. Catalytic azido-hydrazination of alkenes enabled by visible light: mechanistic studies and synthetic applications. Adv. Synth. Catal. 361, 5565–5575 (2019).

    Article  CAS  Google Scholar 

  112. Xiong, Y., Ma, X. & Zhang, G. Copper-catalyzed intermolecular carboamination of alkenes induced by visible light. Org. Lett. 21, 1699–1703 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Huang, H.-M. et al. Catalytic radical generation of π-allylpalladium complexes. Nat. Catal. 3, 393–400 (2020).

    Article  CAS  Google Scholar 

  114. Huang, H. M. et al. Three-component, interrupted radical heck/allylic substitution cascade involving unactivated alkyl bromides. J. Am. Chem. Soc. 142, 10173–10183 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Shing Cheung, K. P., Kurandina, D., Yata, T. & Gevorgyan, V. Photoinduced palladium-catalyzed carbofunctionalization of conjugated dienes proceeding via radical-polar crossover scenario: 1,2-aminoalkylation and beyond. J. Am. Chem. Soc. 142, 9932–9937 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Bunescu, A., Abdelhamid, Y. & Gaunt, M. J. Multicomponent alkene azidoarylation by anion-mediated dual catalysis. Nature 598, 597–603 (2021).

    Article  PubMed  CAS  Google Scholar 

  117. Ge, L. et al. Photoredox-catalyzed oxo-amination of aryl cyclopropanes. Nat. Commun. 10, 4367 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Roos, C. B., Demaerel, J., Graff, D. E. & Knowles, R. R. Enantioselective hydroamination of alkenes with sulfonamides enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 142, 5974–5979 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nguyen, S. T., Zhu, Q. & Knowles, R. R. PCET-enabled olefin hydroamidation reactions with N-alkyl amides. ACS Catal. 9, 4502–4507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Miller, D. C., Choi, G. J., Orbe, H. S. & Knowles, R. R. Catalytic olefin hydroamidation enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 137, 13492–13495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Choi, G. J. & Knowles, R. R. Catalytic alkene carboaminations enabled by oxidative proton-coupled electron transfer. J. Am. Chem. Soc. 137, 9226–9229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jia, J., Ho, Y. A., Bulow, R. F. & Rueping, M. Brønsted base assisted photoredox catalysis: proton coupled electron transfer for remote C−C bond formation via amidyl radicals. Chem. Eur. J. 24, 14054–14058 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Zheng, S. et al. Diastereoselective olefin amidoacylation via photoredox PCET/nickel-dual catalysis: reaction scope and mechanistic insights. Chem. Sci. 11, 4131–4137 (2020).

    Article  CAS  Google Scholar 

  124. Abrams, R., Lefebvre, Q. & Clayden, J. Transition metal free cycloamination of prenyl carbamates and ureas promoted by aryldiazonium salts. Angew. Chem. Int. Ed. 57, 13587–13591 (2018).

    Article  CAS  Google Scholar 

  125. McAtee, R. C., Noten, E. A. & Stephenson, C. R. J. Arene dearomatization through a catalytic N-centered radical cascade reaction. Nat. Commun. 11, 2528 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu, X. Q. et al. Photocatalytic generation of N-centered hydrazonyl radicals: a strategy for hydroamination of b,g-unsaturated hydrazones. Angew. Chem. Int. Ed. 53, 12163–12167 (2014).

    Article  CAS  Google Scholar 

  127. Zhao, Q. Q., Hu, X. Q., Yang, M. N., Chen, J. R. & Xiao, W. J. A visible-light photocatalytic N-radical cascade of hydrazones for the synthesis of dihydropyrazole-fused benzosultams. Chem. Commun. 52, 12749–12752 (2016).

    Article  CAS  Google Scholar 

  128. Yu, X. Y. et al. A visible-light-driven iminyl radical-mediated C–C single bond cleavage/radical addition cascade of oxime esters. Angew. Chem. Int. Ed. 57, 738–743 (2018).

    Article  CAS  Google Scholar 

  129. Chen, J., Guo, H. M., Zhao, Q. Q., Chen, J. R. & Xiao, W. J. Visible light-driven photocatalytic generation of sulfonamidyl radicals for alkene hydroamination of unsaturated sulfonamides. Chem. Commun. 54, 6780–6783 (2018).

    Article  CAS  Google Scholar 

  130. Zhao, Q. Q., Chen, J., Yan, D. M., Chen, J. R. & Xiao, W. J. Photocatalytic hydrazonyl radical-mediated radical cyclization/allylation cascade: synthesis of dihydropyrazoles and tetrahydropyridazines. Org. Lett. 19, 3620–3623 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Hu, X. Q. et al. Catalytic N-radical cascade reaction of hydrazones by oxidative deprotonation electron transfer and tempo mediation. Nat. Commun. 7, 11188 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Hu, X. Q., Chen, J., Chen, J. R., Yan, D. M. & Xiao, W. J. Organophotocatalytic generation of N- and O-centred radicals enables aerobic oxyamination and dioxygenation of alkenes. Chem. Eur. J. 22, 14141–14146 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Davies, J., Svejstrup, T. D., Fernandez Reina, D., Sheikh, N. S. & Leonori, D. Visible-light-mediated synthesis of amidyl radicals: transition-metal-free hydroamination and N-arylation reactions. J. Am. Chem. Soc. 138, 8092–8095 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Davies, J., Booth, S. G., Essafi, S., Dryfe, R. A. & Leonori, D. Visible-light-mediated generation of nitrogen-centered radicals: metal-free hydroimination and iminohydroxylation cyclization reactions. Angew. Chem. Int. Ed. 54, 14017–14021 (2015).

    Article  CAS  Google Scholar 

  135. Mao, R., Yuan, Z., Li, Y. & Wu, J. N-Radical-initiated cyclization through insertion of sulfur dioxide under photoinduced catalyst-free conditions. Chem. Eur. J. 23, 8176–8179 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Wu, K., Du, Y., Wei, Z. & Wang, T. Synthesis of functionalized pyrroloindolines via a visible-light-induced radical cascade reaction: rapid synthesis of (±)-flustraminol B. Chem. Commun. 54, 7443–7446 (2018).

    Article  CAS  Google Scholar 

  137. Zou, S., Geng, S., Chen, L., Wang, H. & Huang, F. Visible light driven metal-free intramolecular cyclization: a facile synthesis of 3-position substituted 3,4-dihydroisoquinolin-1(2H)-one. Org. Biomol. Chem. 17, 380–387 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Shen, X., Huang, C., Yuan, X. A. & Yu, S. Diastereoselective and stereodivergent synthesis of 2-cinnamylpyrrolines enabled by photoredox-catalyzed iminoalkenylation of alkenes. Angew. Chem. Int. Ed. 60, 9672–9679 (2021).

    Article  CAS  Google Scholar 

  139. Soni, V. K. et al. Generation of N-centered radicals via a photocatalytic energy transfer: remote double functionalization of arenes facilitated by singlet oxygen. J. Am. Chem. Soc. 141, 10538–10545 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Guo, X. & Wenger, O. S. Reductive amination by photoredox catalysis and polarity-matched hydrogen atom transfer. Angew. Chem. Int. Ed. 57, 2469–2473 (2018).

    Article  CAS  Google Scholar 

  141. Alam, R. & Molander, G. A. Photoredox-catalyzed direct reductive amination of aldehydes without an external hydrogen/hydride source. Org. Lett. 20, 2680–2684 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wei, D., Netkaew, C. & Darcel, C. Iron-catalysed switchable synthesis of pyrrolidines vs pyrrolidinones by reductive amination of levulinic acid derivatives via hydrosilylation. Adv. Synth. Catal. 361, 1781–1786 (2019).

    Article  CAS  Google Scholar 

  143. Kumar, R., Floden, N. J., Whitehurst, W. G. & Gaunt, M. J. A general carbonyl alkylative amination for tertiary amine synthesis. Nature 581, 415–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kolahdouzan, K., Kumar, R. & Gaunt, M. J. Visible-light mediated carbonyl trifluoromethylative amination as a practical method for the synthesis of β-trifluoromethyl tertiary alkylamines. Chem. Sci. 11, 12089–12094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Floden, N. J. et al. Streamlined synthesis of C(sp3)-rich N-heterospirocycles enabled by visible-light-mediated photocatalysis. J. Am. Chem. Soc. 141, 8426–8430 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Trowbridge, A., Reich, D. & Gaunt, M. J. Multicomponent synthesis of tertiary alkylamines by photocatalytic olefin-hydroaminoalkylation. Nature 561, 522–527 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Matheau-Raven, D. et al. Catalytic reductive functionalization of tertiary amides using Vaska’s complex: synthesis of complex tertiary amine building blocks and natural products. ACS Catal. 10, 8880–8897 (2020).

    Article  CAS  Google Scholar 

  148. Matheau-Raven, D. & Dixon, D. J. General α-amino 1,3,4-oxadiazole synthesis via late-stage reductive functionalization of tertiary amides and lactams. Angew. Chem. Int. Ed. 60, 19725–19729 (2021).

    Article  CAS  Google Scholar 

  149. Ong, D. Y., Fan, D., Dixon, D. J. & Chiba, S. Transition-metal-free reductive functionalization of tertiary carboxamides and lactams for α-branched amine synthesis. Angew. Chem. Int. Ed. 59, 11903–11907 (2020).

    Article  CAS  Google Scholar 

  150. Su, G. et al. A bifunctional iminophosphorane squaramide catalyzed enantioselective synthesis of hydroquinazolines via intramolecular aza-Michael reaction to α,β-unsaturated esters. Chem. Sci. 12, 6064–6072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rogova, T. et al. Reverse polarity reductive functionalization of tertiary amides via a dual iridium-catalyzed hydrosilylation and single electron transfer strategy. ACS Catal. 10, 11438–11447 (2020).

    Article  CAS  Google Scholar 

  152. Maitland, J. A. P. et al. Switchable, reagent-controlled diastereodivergent photocatalytic carbocyclisation of imine-derived α-amino radicals. Angew. Chem. Int. Ed. 60, 24116–24123 (2021).

    Article  CAS  Google Scholar 

  153. Gao, X., Turek-Herman, J. R., Choi, Y. J., Cohen, R. D. & Hyster, T. K. Photoenzymatic synthesis of α-tertiary amines by engineered flavin-dependent “ene”-reductases. J. Am. Chem. Soc. 143, 19643–19647 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Cecere, G., Konig, C. M., Alleva, J. L. & MacMillan, D. W. Enantioselective direct α-amination of aldehydes via a photoredox mechanism: a strategy for asymmetric amine fragment coupling. J. Am. Chem. Soc. 135, 11521–11524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shen, X., Harms, K., Marsch, M. & Meggers, E. A rhodium catalyst superior to iridium congeners for enantioselective radical amination activated by visible light. Chem. Eur. J. 22, 9102–9105 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Huang, X., Webster, R. D., Harms, K. & Meggers, E. Asymmetric catalysis with organic azides and diazo compounds initiated by photoinduced electron transfer. J. Am. Chem. Soc. 138, 12636–12642 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Studer, A. & Curran, D. P. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016).

    Article  CAS  Google Scholar 

  158. Goliszewska, K., Rybicka-Jasinska, K., Szurmak, J. & Gryko, D. Visible-light-mediated amination of π-nucleophiles with N-aminopyridinium salts. J. Org. Chem. 84, 15834–15844 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Kobayashi, Y., Masakado, S. & Takemoto, Y. Photoactivated N-acyliminoiodinanes applied to amination: an ortho-methoxymethyl group stabilizes reactive precursors. Angew. Chem. Int. Ed. 57, 693–697 (2018).

    Article  CAS  Google Scholar 

  160. Wang, Z., Herraiz, A. G., Del Hoyo, A. M. & Suero, M. G. Generating carbyne equivalents with photoredox catalysis. Nature 554, 86–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Sakakibara, Y., Ito, E., Fukushima, T., Murakami, K. & Itami, K. Late-stage functionalization of arylacetic acids by photoredox-catalyzed decarboxylative carbon–heteroatom bond formation. Chem. Eur. J. 24, 9254–9258 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Liang, Y., Zhang, X. & MacMillan, D. W. C. Decarboxylative sp3 C−N coupling via dual copper and photoredox catalysis. Nature 559, 83–88 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nguyen, V. T. et al. Visible-light-enabled direct decarboxylative N-alkylation. Angew. Chem. Int. Ed. 132, 7995–8001 (2020).

    Article  Google Scholar 

  164. Kiyokawa, K., Watanabe, T., Fra, L., Kojima, T. & Minakata, S. Hypervalent iodine(III)-mediated decarboxylative Ritter-type amination leading to the production of α-tertiary amine derivatives. J. Org. Chem. 82, 11711–11720 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Kanai, M., Oisaki, K., Manick, A.-D. & Tanaka, H. Organophotoredox/copper hybrid catalysis for regioselective allylic aminodecarboxylation of β,γ-unsaturated carboxylic acids. Synthesis 50, 2936–2947 (2018).

    Article  CAS  Google Scholar 

  166. Zhang, M. J., Schroeder, G. M., He, Y. H. & Guan, Z. Visible light-mediated decarboxylative amination of indoline-2-carboxylic acids catalyzed by Rose Bengal. RSC Adv. 6, 96693–96699 (2016).

    Article  CAS  Google Scholar 

  167. Lang, S. B., Cartwright, K. C., Welter, R. S., Locascio, T. M. & Tunge, J. A. Photocatalytic aminodecarboxylation of carboxylic acids. Eur. J. Org. Chem. 2016, 3331–3334 (2016).

    Article  CAS  Google Scholar 

  168. Jin, Y., Yang, H. & Fu, H. Thiophenol-catalyzed visible-light photoredox decarboxylative couplings of N-(acetoxy)phthalimides. Org. Lett. 18, 6400–6403 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Zhao, W., Wurz, R. P., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed decarboxylative C−N coupling to generate protected amines: an alternative to the Curtius rearrangement. J. Am. Chem. Soc. 139, 12153–12156 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cheung, K. P. S., Sarkar, S. & Gevorgyan, V. Visible light-induced transition metal catalysis. Chem. Rev. 122, 1543–1625 (2022).

    Article  PubMed  CAS  Google Scholar 

  171. Parasram, M. & Gevorgyan, V. Visible light-induced transition metal-catalyzed transformations: beyond conventional photosensitizers. Chem. Soc. Rev. 46, 6227–6240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Matier, C. D., Schwaben, J., Peters, J. C. & Fu, G. C. Copper-catalyzed alkylation of aliphatic amines induced by visible light. J. Am. Chem. Soc. 139, 17707–17710 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ahn, J. M., Ratani, T. S., Hannoun, K. I., Fu, G. C. & Peters, J. C. Photoinduced, copper-catalyzed alkylation of amines: a mechanistic study of the cross-coupling of carbazole with alkyl bromides. J. Am. Chem. Soc. 139, 12716–12723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ahn, J. M., Peters, J. C. & Fu, G. C. Design of a photoredox catalyst that enables the direct synthesis of carbamate-protected primary amines via photoinduced, copper-catalyzed N-alkylation reactions of unactivated secondary halides. J. Am. Chem. Soc. 139, 18101–18106 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kainz, Q. M. et al. Asymmetric copper-catalyzed C−N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Pan, Z., Fan, Z., Lu, B. & Cheng, J. Halogen-bond-promoted α-C–H amination of ethers for the synthesis of hemiaminal ethers. Adv. Synth. Catal. 360, 1761–1767 (2018).

    Article  CAS  Google Scholar 

  177. Zhang, L. L., Yi, H., Wang, J. & Lei, A. W. Visible-light mediated oxidative C−H/N−H cross-coupling between tetrahydrofuran and azoles using air. J. Org. Chem. 82, 10704–10709 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Pandey, G. & Laha, R. Visible-light-catalyzed direct benzylic C(sp3)–H amination reaction by cross-dehydrogenative coupling. Angew. Chem. Int. Ed. 54, 14875–14879 (2015).

    Article  CAS  Google Scholar 

  179. Guo, Q. et al. Visible-light promoted regioselective amination and alkylation of remote C(sp3)−H bonds. Nat. Commun. 11, 1463 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the National Institutes of Health (NIH) (GM120281; F31GM139395), National Science Foundation (CHE-1955663), Welch Foundation (Chair, AT-0041) and Eugene McDermott Graduate Fellowship (202007) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

V.G. provided key discussions and ideas, and edited and reviewed the text. M.R., V.P. and X.J. contributed equally. V.P. and X.J. gathered literature reports and content discussions, reviews and edits. M.R. wrote and edited the text and made the figures.

Corresponding author

Correspondence to Vladimir Gevorgyan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivas, M., Palchykov, V., Jia, X. et al. Recent advances in visible light-induced C(sp3)–N bond formation. Nat Rev Chem 6, 544–561 (2022). https://doi.org/10.1038/s41570-022-00403-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00403-8

  • Springer Nature Limited

This article is cited by

Navigation