Skip to main content
Log in

Ion and electron acoustic bursts during anti-parallel magnetic reconnection driven by lasers

  • Article
  • Published:

From Nature Physics

View current issue Submit your manuscript

Abstract

Magnetic reconnection converts magnetic energy into thermal and kinetic energy in plasma. Among the numerous candidate mechanisms, ion acoustic instabilities driven by the relative drift between ions and electrons (or equivalently, electric current) have been suggested to play a critical role in dissipating magnetic energy in collisionless plasmas. However, their existence and effectiveness during reconnection have not been well understood due to ion Landau damping and difficulties in resolving the Debye length scale in the laboratory. Here we report a sudden onset of ion acoustic bursts measured by collective Thomson scattering in the exhaust of anti-parallel magnetically driven reconnection using high-power lasers. The ion acoustic bursts are followed by electron acoustic bursts with electron heating and bulk acceleration. We reproduce these observations with one- and two-dimensional particle-in-cell simulations in which an electron outflow jet drives ion acoustic instabilities, forming double layers. These layers induce electron two-stream instabilities that generate electron acoustic bursts and energize electrons. Our results demonstrate the importance of ion and electron acoustic dynamics during reconnection when ion Landau damping is ineffective, a condition applicable to a range of astrophysical plasmas including near-Earth space, stellar flares and black hole accretion engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Experimental setup and Thomson scattering diagnostics.
Fig. 2: Thomson scattering data and analysis.
Fig. 3: Time evolution of IAW and EAW signals.
Fig. 4: Thomson scattering data for EPWs and EAWs in the early stage.
Fig. 5: Reproduction of IAW and EAW by 1D PIC simulation.
Fig. 6: Results of the 2D reconnection PIC simulation.

Similar content being viewed by others

Data availability

The experimental Thomson scattering spectrograms are available on request from the corresponding authors.

Code availability

The synthetic Thomson scattering calculation code is available on request from the corresponding authors. The 1D electrostatic PIC simulation code is available in ref. 62. The OSIRIS 4.0 PIC simulation code is available to authorized users by signing memoranda of understanding with the OSIRIS Consortium, consisting of IST and UCLA. FLASH rad-MHD code is available at https://flash.rochester.edu. The calculation code for the plasma dispersion relation is available in the PlasmaDispersionRelation repository via GitHub at https://github.com/xiaoshulittletree.

References

  1. Yamada, M., Kulsrud, R. & Ji, H. Magnetic reconnection. Rev. Mod. Phys. 82, 603–664 (2010).

    Article  ADS  MATH  Google Scholar 

  2. Ji, H. et al. Magnetic reconnection in the era of exascale computing and multiscale experiments. Nat. Rev. Phys. 4, 263–282 (2022).

    Article  Google Scholar 

  3. Masuda, S., Kosugi, T., Hara, H., Tsuneta, S. & Ogawara, Y. A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495–497 (1994).

    Article  ADS  Google Scholar 

  4. Hesse, M. & Cassak, P. Magnetic reconnection in the space sciences: past, present, and future. J. Geophys. Res. Space Phys. 125, e2018JA025935 (2020).

    Article  ADS  Google Scholar 

  5. Di Matteo, T., Blackman, E. G. & Fabian, A. C. Two-temperature coronae in active galactic nuclei. Mon. Not. R. Astron. Soc. 291, L23–L27 (1997).

    Article  ADS  Google Scholar 

  6. Yuan, F. & Narayan, R. Hot accretion flows around black holes. Annu. Rev. Astron. Astrophys. 52, 529–588 (2014).

    Article  ADS  Google Scholar 

  7. Hesse, M., Schindler, K., Birn, J. & Kuznetsova, M. The diffusion region in collisionless magnetic reconnection. Phys. Plasmas 6, 1781–1795 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  8. Kulsrud, R., Ji, H., Fox, W. & Yamada, M. An electromagnetic drift instability in the magnetic reconnection experiment and its importance for magnetic reconnection. Phys. Plasmas 12, 082301 (2005).

    Article  ADS  Google Scholar 

  9. Burch, J. L. et al. Electron-scale measurements of magnetic reconnection in space. Science 352, aaf2939 (2016).

    Article  ADS  Google Scholar 

  10. Torbert, R. B. et al. Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science 362, 1391–1395 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  11. Ji, H. et al. New insights into dissipation in the electron layer during magnetic reconnection. Geophys. Res. Lett. 35, L13106 (2008).

    Article  ADS  Google Scholar 

  12. Cozzani, G. et al. Structure of a perturbed magnetic reconnection electron diffusion region in the Earth’s magnetotail. Phys. Rev. Lett. 127, 215101 (2021).

    Article  ADS  Google Scholar 

  13. Lapenta, G., Markidis, S., Divin, A., Newman, D. & Goldman, M. Separatrices: the crux of reconnection. J. Plasma Phys. 81, 325810109 (2015).

    Article  Google Scholar 

  14. Kennel, C. & Petschek, H. Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1–28 (1966).

    Article  ADS  Google Scholar 

  15. Goldman, M. V. et al. Čerenkov emission of quasiparallel whistlers by fast electron phase-space holes during magnetic reconnection. Phys. Rev. Lett. 112, 145002 (2014).

    Article  ADS  Google Scholar 

  16. Buneman, O. Instability, turbulence, and conductivity in current-carrying plasma. Phys. Rev. Lett. 1, 8–9 (1958).

    Article  ADS  Google Scholar 

  17. Drake, J. et al. Formation of electron holes and particle energization during magnetic reconnection. Science 299, 873–877 (2003).

    Article  ADS  Google Scholar 

  18. Che, H., Drake, J. F., Swisdak, M. & Yoon, P. H. Nonlinear development of streaming instabilities in strongly magnetized plasma. Phys. Rev. Lett. 102, 145004 (2009).

    Article  ADS  Google Scholar 

  19. Carter, T., Ji, H., Trintchouk, F., Yamada, M. & Kulsrud, R. Measurement of lower-hybrid drift turbulence in a reconnecting current sheet. Phys. Rev. Lett. 88, 015001 (2002).

    Article  ADS  Google Scholar 

  20. Ji, H. et al. Electromagnetic fluctuation during fast reconnection in a laboratory plasma. Phys. Rev. Lett. 92, 115001 (2004).

    Article  ADS  Google Scholar 

  21. Ji, H., Kulsrud, R., Fox, W. & Yamada, M. An obliquely propagating electromagnetic drift instability in the lower hybrid frequency range. J. Geophys. Res. 110, A08212 (2005).

    Article  ADS  Google Scholar 

  22. Fox, W., Porkolab, M., Egedal, J., Katz, N. & Le, A. Laboratory observations of electron energization and associated lower-hybrid and Trivelpiece–Gould wave turbulence during magnetic reconnection. Phys. Plasmas 17, 072303 (2010).

    Article  ADS  Google Scholar 

  23. Yoo, J. et al. Whistler wave generation by anisotropic tail electrons during asymmetric magnetic reconnection in space and laboratory. Geophys. Res. Lett. 45, 8054–8061 (2018).

    Article  ADS  Google Scholar 

  24. Graham, D. B. et al. Universality of lower hybrid waves at Earth’s magnetopause. J. Geophys. Res. Space Phys. 124, 8727–8760 (2019).

    Article  ADS  Google Scholar 

  25. Chen, L.-J. et al. Lower-hybrid drift waves driving electron nongyrotropic heating and vortical flows in a magnetic reconnection layer. Phys. Rev. Lett. 125, 025103 (2020).

    Article  ADS  Google Scholar 

  26. Yoo, J. et al. Lower hybrid drift waves during guide field reconnection. Geophys. Res. Lett. 47, e2020GL087192 (2020).

    Article  ADS  Google Scholar 

  27. Krall, N. & Liewer, P. Low-frequency instabilities in magnetic pulses. Phys. Rev. A 4, 2094–2103 (1971).

    Article  ADS  Google Scholar 

  28. McBride, J. B., Ott, E., Boris, J. P. & Orens, J. H. Theory and simulation of turbulent heating by the modified two-stream instability. Phys. Fluids 15, 2367–2383 (1972).

    Article  ADS  Google Scholar 

  29. Daughton, W. Two-fluid theory of the drift kink instability. J. Geophys. Res. Space Phys. 104, 28701–28707 (1999).

    Article  ADS  Google Scholar 

  30. Nakamura, T. et al. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas. Nat. Commun. 8, 1582 (2017).

    Article  ADS  Google Scholar 

  31. Coppi, B. & Friedland, A. B. Processes of magnetic-energy conversion and solar flares. Astrophys. J. 169, 379–404 (1971).

    Article  ADS  Google Scholar 

  32. Smith, D. F. & Priest, E. Current limitation in solar flares. Astrophys. J. 176, 487–495 (1972).

    Article  ADS  Google Scholar 

  33. Coroniti, F. & Eviatar, A. Magnetic field reconnection in a collisionless plasma. Astrophys. J. Suppl. Ser. 33, 189–210 (1977).

    Article  ADS  Google Scholar 

  34. Sagdeev, R. Z. The 1976 Oppenheimer lectures: critical problems in plasma astrophysics. I. Turbulence and nonlinear waves. Rev. Mod. Phys. 51, 1–9 (1979).

    Article  ADS  Google Scholar 

  35. Ugai, M. & Tsuda, T. Magnetic field-line reconnexion by localized enhancement of resistivity: part 1. Evolution in a compressible MHD fluid. J. Plasma Phys. 17, 337–356 (1977).

    Article  ADS  Google Scholar 

  36. Sato, T. & Hayashi, T. Externally driven magnetic reconnection and a powerful magnetic energy converter. Phys. Fluids 22, 1189–1202 (1979).

    Article  ADS  Google Scholar 

  37. Aparicio, J., Haines, M. G., Hastie, R. J. & Wainwright, J. P. Fast reconnection due to localized anomalous resistivity. Phys. Plasmas 5, 3180–3186 (1998).

    Article  ADS  Google Scholar 

  38. Kulsrud, R. M. Magnetic reconnection in a magnetohydrodynamic plasma. Phys. Plasmas 5, 1599–1606 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  39. Kulsrud, R. Magnetic reconnection: Sweet-Parker versus Petschek. Earth Planet. Sp. 53, 417–422 (2001).

    Article  ADS  Google Scholar 

  40. Uzdensky, D. A. Petschek-like reconnection with current-driven anomalous resistivity and its application to solar flares. Astrophys. J. 587, 450–457 (2003).

    Article  ADS  Google Scholar 

  41. Gekelman, W. & Stenzel, R. Magnetic field line reconnection experiments: 6. Magnetic turbulence. J. Geophys. Res. Space Phys. 89, 2715–2733 (1984).

    Article  ADS  Google Scholar 

  42. Chien, A. et al. Non-thermal electron acceleration from magnetically driven reconnection in a laboratory plasma. Nat. Phys. 19, 254–262 (2023).

    Google Scholar 

  43. Boehly, T. et al. Initial performance results of the OMEGA laser system. Opt. Commun. 133, 495–506 (1997).

    Article  ADS  Google Scholar 

  44. Li, C. K. et al. Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography. Phys. Rev. Lett. 97, 135003 (2006).

    Article  ADS  Google Scholar 

  45. Gao, L. et al. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current. Phys. Plasmas 23, 043106 (2016).

    Article  ADS  Google Scholar 

  46. Chien, A. et al. Study of a magnetically driven reconnection platform using ultrafast proton radiography. Phys. Plasmas 26, 062113 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  47. Chien, A. et al. Pulse width dependence of magnetic field generation using laser-powered capacitor coils. Phys. Plasmas 28, 052105 (2021).

    Article  ADS  Google Scholar 

  48. Fryxell, B. et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273 (2000).

    Article  ADS  Google Scholar 

  49. Milder, A. L. et al. Direct measurement of the return current instability in a laser-produced plasma. Phys. Rev. Lett. 129, 115002 (2022).

    Article  ADS  Google Scholar 

  50. Froula, D. H. et al. Stimulated Brillouin scattering in the saturated regime. Phys. Plasmas 10, 1846–1853 (2003).

    Article  ADS  Google Scholar 

  51. Daughney, C. C., Holmes, L. S. & Paul, J. W. M. Measurement of spectrum of turbulence within a collisionless shock by collective scattering of light. Phys. Rev. Lett. 25, 497–499 (1970).

    Article  ADS  Google Scholar 

  52. Froula, D. H., Glenzer, S. H., Luhmann, N. C. J. & Sheffield, J. Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques 2nd edn (Elsevier, 2011).

  53. Suttle, L. G. et al. Structure of a magnetic flux annihilation layer formed by the collision of supersonic, magnetized plasma flows. Phys. Rev. Lett. 116, 225001 (2016).

    Article  ADS  Google Scholar 

  54. Hare, J. D. et al. Anomalous heating and plasmoid formation in a driven magnetic reconnection experiment. Phys. Rev. Lett. 118, 085001 (2017).

    Article  ADS  Google Scholar 

  55. Suttle, L. G. et al. Collective optical Thomson scattering in pulsed-power driven high energy density physics experiments (invited). Rev. Sci. Instrum. 92, 033542 (2021).

    Article  ADS  Google Scholar 

  56. Sakai, K. et al. Collective Thomson scattering in non-equilibrium laser produced two-stream plasmas. Phys. Plasmas 27, 103104 (2020).

    Article  ADS  Google Scholar 

  57. Swadling, G. F. et al. Measurement of kinetic-scale current filamentation dynamics and associated magnetic fields in interpenetrating plasmas. Phys. Rev. Lett. 124, 215001 (2020).

    Article  ADS  Google Scholar 

  58. Milder, A. L. et al. Evolution of the electron distribution function in the presence of inverse bremsstrahlung heating and collisional ionization. Phys. Rev. Lett. 124, 025001 (2020).

    Article  ADS  Google Scholar 

  59. Hawreliak, J. et al. Thomson scattering measurements of heat flow in a laser-produced plasma. J. Phys. B: At. Mol. Opt. Phys. 37, 1541–1551 (2004).

    Article  ADS  Google Scholar 

  60. Fried, B. D. & Conte, S. D. The Plasma Dispersion Function: The Hilbert Transform of the Gaussian (Academic Press, 1961).

  61. Khotyaintsev, Y. V. et al. Electron heating by Debye-scale turbulence in guide-field reconnection. Phys. Rev. Lett. 124, 045101 (2020).

    Article  ADS  Google Scholar 

  62. Markidis, S. & Lapenta, G. The energy conserving particle-in-cell method. J. Comput. Phys. 230, 7037–7052 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Sato, T. & Okuda, H. Ion-acoustic double layers. Phys. Rev. Lett. 44, 740–743 (1980).

    Article  ADS  Google Scholar 

  64. Vazsonyi, A. R., Hara, K. & Boyd, I. D. Non-monotonic double layers and electron two-stream instabilities resulting from intermittent ion acoustic wave growth. Phys. Plasmas 27, 112303 (2020).

    Article  ADS  Google Scholar 

  65. Gary, S. P. & Omidi, N. The ion–ion acoustic instability. J. Plasma Phys. 37, 45–61 (1987).

    Article  ADS  Google Scholar 

  66. Steinvall, K. et al. Large amplitude electrostatic proton plasma frequency waves in the magnetospheric separatrix and outflow regions during magnetic reconnection. Geophys. Res. Lett. 48, e2020GL090286 (2021).

    Article  ADS  Google Scholar 

  67. Uchino, H., Kurita, S., Harada, Y., Machida, S. & Angelopoulos, V. Waves in the innermost open boundary layer formed by dayside magnetopause reconnection. J. Geophys. Res. Space Phys. 122, 3291–3307 (2017).

    Article  ADS  Google Scholar 

  68. Mozer, F. S. et al. Core electron heating by triggered ion acoustic waves in the solar wind. Astrophys. J. Lett. 927, L15 (2022).

    Article  ADS  Google Scholar 

  69. Ergun, R. E. et al. Magnetospheric multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause. Geophys. Res. Lett. 43, 5626–5634 (2016).

    Article  ADS  Google Scholar 

  70. Smith, R. A. A review of double layer simulations. Phys. Scr. T2A, 238–251 (1982).

    Article  ADS  Google Scholar 

  71. Goldman, M. V., Newman, D. L. & Ergun, R. E. Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp. Nonlin. Processes Geophys. 10, 37–44 (2003).

    Article  ADS  Google Scholar 

  72. Daughton, W. et al. Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 7, 539–542 (2011).

    Article  Google Scholar 

  73. Polito, V. et al. Broad non-Gaussian Fe xxiv line profiles in the impulsive phase of the 2017 September 10 X8.3-class flare observed by Hinode/EIS. Astrophys. J. 864, 63 (2018).

    Article  ADS  Google Scholar 

  74. Miteva, R., Mann, G., Vocks, C. & Aurass, H. Excitation of electrostatic fluctuations by jets in a flaring plasma. Astron. Astrophys. 461, 1127–1132 (2007).

    Article  ADS  MATH  Google Scholar 

  75. Narayan, R., Mahadevan, R. & Quataert, E. Advection-dominated accretion around black holes. in Theory of Black Hole Accretion Disks (eds Abramowicz, M. A. et al.) 148–182 (Cambridge Univ. Press, 1998).

  76. Katz, J. et al. A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA. Rev. Sci. Instrum. 83, 10E349 (2012).

    Article  Google Scholar 

  77. Chung, H.-K., Chen, M., Morgan, W., Ralchenko, Y. & Lee, R. FLYCHK: generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energ. Dens. Phys. 1, 3–12 (2005).

    Article  ADS  Google Scholar 

  78. Shuster, J. R. et al. Highly structured electron anisotropy in collisionless reconnection exhausts. Geophys. Res. Lett. 41, 5389–5395 (2014).

    Article  ADS  Google Scholar 

  79. Bessho, N., Chen, L.-J., Shuster, J. R. & Wang, S. Electron distribution functions in the electron diffusion region of magnetic reconnection: physics behind the fine structures. Geophys. Res. Lett. 41, 8688–8695 (2014).

    Article  ADS  Google Scholar 

  80. Fonseca, R. A. et al. OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In Computational Science—ICCS 2002 (eds Sloot, P. M. A. et al.) 342–351 (Springer, 2002).

  81. Hemker, R. G. Particle-in-Cell Modeling of Plasma-Based Accelerators in Two and Three Dimensions (Univ. of California, Los Angeles, 2000).

  82. Harris, E. On a plasma sheath separating regions of oppositely directed magnetic field. Nuovu Cim. 23, 115–121 (1962).

    Article  ADS  MATH  Google Scholar 

  83. Norgren, C. et al. On the presence and thermalization of cold ions in the exhaust of antiparallel symmetric reconnection. Front. Astron. Space Sci. 8, 730061 (2021).

    Article  Google Scholar 

  84. Birn, J. et al. Geomagnetic environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3719 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the US Department of Energy (DoE), Office of Science, Office of Fusion Energy Sciences High-Energy-Density Laboratory Plasma Science program, under award no. DE-SC0020103 (H.J., S.Z., A.C., L.G. and E.G.B.). The experiment was conducted at the OMEGA Laser Facility at the University of Rochester’s Laboratory for Laser Energetics with the beam time through the National Laser Users’ Facility (NLUF) Program supported by DoE/National Nuclear Security Administration (NNSA). E.G.B. acknowledges support from DoE grants DE-SC0020432 and DE-SC0020434, and NSF grants AST-1813298 and PHY-2020249. J.K., C.L., A.B. and R.P. are supported under the auspices of the US DoE/NNSA (contract DE-NA0003868). The FLASH code used in this work was in part developed by the DoE NNSA-ASC OASCR Flash Center at the University of Chicago. We would like to acknowledge the OSIRIS Consortium, consisting of UCLA and IST (Lisbon, Portugal), for providing access to the OSIRIS 4.0 framework supported by NSF ACI-1339893. We would like to thank Q. Wang, L. Suttle, J. Halliday, S. Lebedev and W. Daughton for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.J., L.G. and E.G.B. initiated the research. S.Z., A.C., L.G., H.J. and E.G.B. designed the experiment with inputs from J.M., H.C., R.F., D.H.F. and J.K. S.Z., R.F., D.H.F. and J.K. analysed the Thomson scattering spectra. S.Z., A.C., L.G., H.J., J.K., C.L., A.B. and H.C. performed the experiments. C.L., A.B. and R.P. conducted and analysed the proton radiography. H.J. and E.G.B. contributed to the astrophysics implications. S.Z. performed the 1D and 2D PIC simulations, FLASH simulations, synthetic Thomson scattering simulations and synthetic proton radiography simulations. S.Z., A.C., L.G., H.J. and E.G.B. contributed to the simulation data interpretations. S.Z., H.J., E.G.B. and L.G. wrote the manuscript. All the authors read, revised and approved the final version of the manuscript.

Corresponding authors

Correspondence to Shu Zhang or Hantao Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Richard Sydora, Yuri Khotyaintsev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, methods and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Chien, A., Gao, L. et al. Ion and electron acoustic bursts during anti-parallel magnetic reconnection driven by lasers. Nat. Phys. 19, 909–916 (2023). https://doi.org/10.1038/s41567-023-01972-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-01972-1

  • Springer Nature Limited

This article is cited by

Navigation