Skip to main content
Log in

Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state

  • Article
  • Published:

From Nature Physics

View current issue Submit your manuscript

Abstract

Conversion between signals in the microwave and optical domains is of great interest both for classical telecommunication and for connecting future superconducting quantum computers into a global quantum network. For quantum applications, the conversion has to be efficient, as well as operate in a regime of minimal added classical noise. While efficient conversion has been demonstrated using mechanical transducers, they have so far all operated with a substantial thermal noise background. Here, we overcome this limitation and demonstrate coherent conversion between gigahertz microwave signals and the optical telecom band with a thermal background of less than one phonon. We use an integrated, on-chip electro-optomechanical device that couples surface acoustic waves driven by a resonant microwave signal to an optomechanical crystal featuring a 2.7 GHz mechanical mode. We initialize the mechanical mode in its quantum ground state, which allows us to perform the transduction process with minimal added thermal noise, while maintaining an optomechanical cooperativity >1, so that microwave photons mapped into the mechanical resonator are effectively upconverted to the optical domain. We further verify the preservation of the coherence of the microwave signal throughout the transduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Device layout and room-temperature characterization.
Fig. 2: Device characterization at millikelvin temperatures.
Fig. 3: Correlation measurements of the microwave-to-optical transducer in the pulsed regime.
Fig. 4: Preservation of phase coherence during transduction.

Similar content being viewed by others

Data availability

The data represented in the figures are available as Supplementary information files. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS  Google Scholar 

  2. Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    ADS  Google Scholar 

  3. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    ADS  Google Scholar 

  4. Kurpiers, P. et al. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558, 264–267 (2018).

    ADS  Google Scholar 

  5. Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

    ADS  Google Scholar 

  6. Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).

    ADS  Google Scholar 

  7. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Google Scholar 

  8. Witmer, J. D., Hill, J. T. & Safavi-Naeini, A. H. Design of nanobeam photonic crystal resonators for a silicon-on-lithium-niobate platform. Opt. Express 24, 5876–5885 (2016).

    ADS  Google Scholar 

  9. Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018).

    ADS  Google Scholar 

  10. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 526, 101–104 (2018).

    ADS  Google Scholar 

  11. Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597–604 (2016).

    ADS  Google Scholar 

  12. O’Brien, C., Lauk, N., Blum, S., Morigi, G. & Fleischhauer, M. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113, 063603 (2014).

    ADS  Google Scholar 

  13. Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

    ADS  Google Scholar 

  14. Stannigel, K., Rabl, P., Sørensen, A. S., Zoller, P. & Lukin, M. D. Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010).

    ADS  Google Scholar 

  15. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    Google Scholar 

  16. Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Google Scholar 

  17. Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014).

    ADS  Google Scholar 

  18. Van Laer, R., Patel, R. N., McKenna, T. P., Witmer, J. D. & Safavi-Naeini, A. H. Electrical driving of x-band mechanical waves in a silicon photonic circuit. APL Photon. 3, 086102 (2018).

    ADS  Google Scholar 

  19. Moaddel Haghighi, I., Malossi, N., Natali, R., Di Giuseppe, G. & Vitali, D. Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer. Phys. Rev. Appl. 9, 034031 (2018).

    ADS  Google Scholar 

  20. Suchoi, O., Ella, L., Shtempluk, O. & Buks, E. Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation. Phys. Rev. A 90, 033818 (2014).

    ADS  Google Scholar 

  21. Vainsencher, A., Satzinger, K. J., Peairs, G. A. & Cleland, A. N. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device. Appl. Phys. Lett. 109, 033107 (2016).

    ADS  Google Scholar 

  22. Balram, K. C., Davanço, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photon. 10, 346–352 (2016).

    ADS  Google Scholar 

  23. Higginbotham, A. P. et al. Electro-optic correlations improve an efficient mechanical converter. Nat. Phys. 14, 1038–1042 (2018).

    Google Scholar 

  24. Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of merit for quantum transducers. Preprint at https://arxiv.org/abs/1610.01099 (2016).

  25. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    ADS  Google Scholar 

  26. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    ADS  Google Scholar 

  27. Meenehan, S. M. et al. Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground state of motion. Phys. Rev. X 5, 041002 (2015).

    Google Scholar 

  28. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    ADS  Google Scholar 

  29. Hong, S. et al. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 358, 203–206 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  30. Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  31. Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    ADS  Google Scholar 

  32. Riedinger, R. et al. Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473–477 (2018).

    ADS  Google Scholar 

  33. Ockeloen-Korppi, C. F. et al. Stabilized entanglement of massive mechanical oscillators. Nature 556, 478–482 (2018).

    ADS  Google Scholar 

  34. Meenehan, S. M. et al. Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90, 011803 (2014).

    ADS  Google Scholar 

  35. Moores, B. A., Sletten, L. R., Viennot, J. J. & Lehnert, K. W. Cavity quantum acoustic device in the multimode strong coupling regime. Phys. Rev. Lett. 120, 227701 (2018).

    ADS  Google Scholar 

  36. Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).

    ADS  Google Scholar 

  37. Skauli, T. et al. Improved dispersion relations for GaAs and applications to nonlinear optics. J. Appl. Phys. 94, 6447–6455 (2003).

    ADS  Google Scholar 

  38. Guha, B. et al. Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106. Optica 4, 218–221 (2017).

    ADS  Google Scholar 

  39. Safavi-Naeini, A. H. et al. Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012).

    ADS  Google Scholar 

  40. Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012).

    ADS  Google Scholar 

  41. Galland, C., Sangouard, N., Piro, N., Gisin, N. & Kippenberg, T. J. Heralded single-phonon preparation, storage, and readout in cavity optomechanics. Phys. Rev. Lett. 112, 143602 (2014).

    ADS  Google Scholar 

  42. Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316 (2016).

    ADS  Google Scholar 

  43. Wu, M., Zeuthen, E., Balram, K. C. & Srinivasan, K. Microwave-to-optical transduction using coupled piezoelectric and optomechanical resonators. Preprint at https://arxiv.org/abs/1907.04830 (2019).

  44. Marinković, I. et al. Optomechanical Bell test. Phys. Rev. Lett. 121, 220404 (2018).

    ADS  Google Scholar 

  45. Gustafsson, M. V. et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014).

    ADS  Google Scholar 

  46. Ramp, H. et al. Elimination of thermomechanical noise in piezoelectric optomechanical crystals. Phys. Rev. Lett. 123, 093603 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank V. Anant, J. Davis, M. Jenkins and C. Schäfermeier for valuable discussions and support. We also acknowledge assistance from the Kavli Nanolab Delft, in particular from M. Zuiddam and C. de Boer. The sample growth was realized in the NanoLab@TU/e cleanroom facility. This project was supported by Foundation for Fundamental Research on Matter (FOM) Projectruimte grants (15PR3210, 16PR1054), the European Research Council (ERC StG Strong-Q, 676842) and by the Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience programme, as well as through a Vidi grant (680-47-541/994), the Gravitation programme Research Center for Integrated Nanophotonics and the ARO/LPS CQTS programme.

Author information

Authors and Affiliations

Authors

Contributions

M.F., R.S., K.S. and S.G. planned the experiment and performed the device design. M.F., R.S., C.G. and R.A.N. fabricated the sample and F.v.O. and A.F. supplied the material. M.F., R.S., A.W. and I.M. performed the measurements, while M.F., R.S., K.S. and S.G. analysed the data and wrote the manuscript with input from all authors. S.G. supervised the project.

Corresponding author

Correspondence to Simon Gröblacher.

Ethics declarations

Competing interests

M.F., R.S. and S.G. declare that there is a pending patent application related to this research.

Additional information

Peer review information Nature Physics thanks David Vitali and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsch, M., Stockill, R., Wallucks, A. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nat. Phys. 16, 69–74 (2020). https://doi.org/10.1038/s41567-019-0673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0673-7

  • Springer Nature Limited

This article is cited by

Navigation