Skip to main content
Log in

Solution-processed PbS quantum dot infrared laser with room-temperature tunable emission in the optical telecommunications window

  • Letter
  • Published:

From Nature Photonics

View current issue Submit your manuscript

Abstract

Solution-processed semiconductor lasers have achieved much success across the nanomaterial research community, including in relation to organic semiconductors1,2, perovskites3,4 and colloidal semiconductor nanocrystals5,6. The ease of integration with other photonic components and the potential for upscaling using emerging large-area fabrication technologies (such as roll-to-roll7) make these lasers attractive as low-cost photonic light sources that can find use in a variety of applications, including integrated photonic circuitry8,9, telecommunications10,11, chemo-/bio-sensing12,13, security14 and lab-on-chip experiments15. However, for fibre-optic or free-space optical communications and eye-safe LIDAR applications, room-temperature solution-processed lasers have remained elusive. Here, we report a solution-processed laser comprising PbS colloidal quantum dots integrated on a distributed feedback cavity, with tunable lasing wavelength from 1.55 μm to 1.65 μm. These lasers operate at room temperature and exhibit linewidths as low as ~0.9 meV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Device design and fabrication.
Fig. 2: DFB lasing characterization.
Fig. 3: Infrared lasing tunability.
Fig. 4: DFB lasing from n-doped PbS CQDs.

Similar content being viewed by others

Data availability

The data presented in this study are available in Zenodo with the identifier https://doi.org/10.5281/zenodo.5112914. Supplementary Information data are available from the corresponding author upon reasonable request.

Code availability

FDFD MATLAB codes are available in Zenodo with the identifier https://doi.org/10.5281/zenodo.5112914.

References

  1. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    Article  Google Scholar 

  2. Chénais, S. & Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 61, 390–406 (2012).

    Article  Google Scholar 

  3. Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    Article  ADS  Google Scholar 

  4. Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    Article  ADS  Google Scholar 

  5. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  ADS  Google Scholar 

  6. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  ADS  Google Scholar 

  7. Kim, Y. Y. et al. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nat. Commun. 11, 5146 (2020).

    Article  ADS  Google Scholar 

  8. Xie, W. et al. On-chip integrated quantum-dot-silicon-nitride microdisk lasers. Adv. Mater. 29, 1604866 (2017).

    Article  Google Scholar 

  9. Tsiminis, G. et al. Nanoimprinted organic semiconductor laser pumped by a light-emitting diode. Adv. Mater. 25, 2826–2830 (2013).

    Article  Google Scholar 

  10. Ujager, F. S., Zaidi, S. M. H. & Younis, U. A review of semiconductor lasers for optical communications. In Proc. 7th International Symposium on High-Capacity Optical Networks Enabling Technologies HONET 2010 107–111 (IEEE, 2010); https://doi.org/10.1109/HONET.2010.5715754

  11. Wang, Y. et al. Monolithic quantum-dot distributed feedback laser array on Si. Optica 5, 528–533 (2018).

    Article  ADS  Google Scholar 

  12. Rose, A., Zhu, Z., Madigan, C. F., Swager, T. M. & Bulović, V. Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876–879 (2005).

    Article  ADS  Google Scholar 

  13. Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5, 591–596 (2008).

    Article  Google Scholar 

  14. Karl, M. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 9, 1525 (2018).

    Article  ADS  Google Scholar 

  15. Vannahme, C., Klinkhammer, S., Lemmer, U. & Mappes, T. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Opt. Express 19, 8179–8186 (2011).

    Article  ADS  Google Scholar 

  16. Pradhan, S. et al. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14, 72–79 (2019).

    Article  ADS  Google Scholar 

  17. Kirmani, A. R., Luther, J. M., Abolhasani, M. & Amassian, A. Colloidal quantum dot photovoltaics: current progress and path to gigawatt scale enabled by smart manufacturing. ACS Energy Lett. 5, 3069–3100 (2020).

    Article  Google Scholar 

  18. Bi, Y. et al. Infrared solution-processed quantum dot solar cells reaching external quantum efficiency of 80% at 1.35 μm and Jsc in excess of 34 mA cm–2. Adv. Mater. 30, 1704928 (2018).

    Article  Google Scholar 

  19. Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 7, 335–339 (2012).

    Article  ADS  Google Scholar 

  20. Adachi, M. M. et al. Microsecond-sustained lasing from colloidal quantum dot solids. Nat. Commun. 6, 8694 (2015).

    Article  ADS  Google Scholar 

  21. Park, Y. S., Bae, W. K., Baker, T., Lim, J. & Klimov, V. I. Effect of Auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 15, 7319–7328 (2015).

    Article  ADS  Google Scholar 

  22. Roh, J., Park, Y. S., Lim, J. & Klimov, V. I. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity. Nat. Commun. 11, 271 (2020).

    Article  ADS  Google Scholar 

  23. Özdemir, O., Ramiro, I., Gupta, S. & Konstantatos, G. High sensitivity hybrid PbS CQD-TMDC photodetectors up to 2 μm. ACS Photon. 6, 2381–2386 (2019).

    Article  Google Scholar 

  24. Wu, K., Park, Y. S., Lim, J. & Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).

    Article  ADS  Google Scholar 

  25. Cooney, R. R., Sewall, S. L., Sagar, D. M. & Kambhampati, P. State-resolved manipulations of optical gain in semiconductor quantum dots: size universality, gain tailoring and surface effects. J. Chem. Phys. 131, 164706 (2009).

    Article  ADS  Google Scholar 

  26. Kang, I. & Wise, F. W. Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B 14, 1632–1646 (1997).

    Article  ADS  Google Scholar 

  27. Schaller, R. D., Petruska, M. A. & Klimov, V. I. Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals. J. Phys. Chem. B 107, 13765–13768 (2003).

    Article  Google Scholar 

  28. Hoogland, S. et al. A solution-processed 1.53-μm quantum dot laser with temperature-invariant emission wavelength. Opt. Express 14, 3273–3281 (2006).

    Article  ADS  Google Scholar 

  29. Liao, C. et al. Low-threshold near-infrared lasing at room temperature using low-toxicity Ag2Se quantum dots. Nanoscale 12, 21879–21884 (2020).

    Article  Google Scholar 

  30. Christodoulou, S. et al. Single-exciton gain and stimulated emission across the infrared telecom band from robust heavily doped PbS colloidal quantum dots. Nano Lett. 20, 5909–5915 (2020).

    Article  ADS  Google Scholar 

  31. Park, D. & Kim, M. Mode analysis of DFB SE lasers. IEEE J. Quantum Electron. 32, 1432–1440 (1996).

    Article  ADS  Google Scholar 

  32. Kogelnik, H. & Shank, C. V. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972).

    Article  ADS  Google Scholar 

  33. Wang, Z. et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photon. 9, 837–842 (2015).

    Article  ADS  Google Scholar 

  34. Tian, B. et al. Room temperature O-band DFB laser array directly grown on (001) silicon. Nano Lett. 17, 559–564 (2017).

    Article  ADS  Google Scholar 

  35. Kambhampati, P. Multiexcitons in semiconductor nanocrystals: a platform for optoelectronics at high carrier concentration. J. Phys. Chem. Lett. 3, 1182–1190 (2012).

    Article  Google Scholar 

  36. Cooney, R. R., Sewall, S. L., Sagar, D. M. & Kambhampati, P. Gain control in semiconductor quantum dots via state-resolved optical pumping. Phys. Rev. Lett. 102, 127404 (2009).

    Article  ADS  Google Scholar 

  37. Moreels, I. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3, 3023–3030 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725165, to G.K.) and the Ministerio de Ciencia e Innovacion (grant agreement no. PID2020-112591RB-I00, to G.K.). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 754558 (to N.T). Additionally, this project has received funding from the Spanish State Research Agency, through the ‘Severo Ochoa’ Center of Excellence CEX2019-000910-S, the CERCA Programme/Generalitat de Catalunya and Fundació Mir-Puig.

Author information

Authors and Affiliations

Authors

Contributions

G.K. designed, supervised and directed the study. G.L.W. designed the experiments, performed the theoretical modelling and fabricated and characterized the laser structures and the thin films. M.D. sythesized the quantum dot materials. N.T. carried out FIB and SEM characterization measurements and contributed to thin film and laser development. G.L.W. and G.K. wrote the manuscript, with input from the co-authors.

Corresponding author

Correspondence to G. Konstantatos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Patanjali Kambhampati, Eiichi Kuramochi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Discussion and Tables 1 and 2.

Supplementary Video 1

Video of lasing threshold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitworth, G.L., Dalmases, M., Taghipour, N. et al. Solution-processed PbS quantum dot infrared laser with room-temperature tunable emission in the optical telecommunications window. Nat. Photon. 15, 738–742 (2021). https://doi.org/10.1038/s41566-021-00878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00878-9

  • Springer Nature Limited

This article is cited by

Navigation