Skip to main content
Log in

Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide

  • Article
  • Published:

From Nature Microbiology

View current issue Submit your manuscript

Abstract

Bacterial quorum sensing is a well-characterized communication system that governs a large variety of collective behaviours. By comparison, quorum sensing regulation in eukaryotic microbes remains poorly understood, especially its functional role in eukaryote-specific behaviours, such as sexual reproduction. Cryptococcus neoformans is a prevalent fungal pathogen that has two defined sexual cycles (bisexual and unisexual) and is a model organism for studying sexual reproduction in fungi. Here, we show that the quorum sensing peptide Qsp1 serves as an important signalling molecule for both forms of sexual reproduction. Qsp1 orchestrates various differentiation and molecular processes, including meiosis, the hallmark of sexual reproduction. It activates bisexual mating, at least in part through the control of pheromone, a signal necessary for bisexual activation. Notably, Qsp1 also plays a major role in the intercellular regulation of unisexual initiation and coordination, in which pheromone is not strictly required. Through a multi-layered genetic screening approach, we identified the atypical zinc finger regulator Cqs2 as an important component of the Qsp1 signalling cascade during both bisexual and unisexual reproduction. The absence of Cqs2 eliminates the Qsp1-stimulated mating response. Together, these findings extend the range of behaviours governed by quorum sensing to sexual development and meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: The mating pheromone is largely dispensable for unisexual reproduction in the XL280α background.
Fig. 2: Quorum sensing peptide encoding gene CQS1 is important for both bisexual and unisexual development.
Fig. 3: Qsp1 mediates mating response through the control of Mat2.
Fig. 4: Qsp1 participates in glucose starvation-induced mating response and morphogenesis.
Fig. 5: Cqs2 as an important Qsp1 signalling cascade member promotes bisexual and unisexual mating.
Fig. 6: Cqs2 can associate with its own promoter through an atypical C2H2 zinc finger domain conserved among divergent fungal species.

Similar content being viewed by others

References

  1. Ene, I. V. & Bennett, R. J. The cryptic sexual strategies of human fungal pathogens. Nat. Rev. Microbiol. 12, 239–251 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Heitman, J., Carter, D. A., Dyer, P. S. & Soll, D. R. Sexual reproduction of human fungal pathogens. Cold Spring Harb. Perspect. Med. 4, a019281 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Dyer, P. S. & O'Gorman, C. M. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol. Rev. 36, 165–192 (2012).

    Article  PubMed  CAS  Google Scholar 

  4. Ni, M., Feretzaki, M., Sun, S., Wang, X. & Heitman, J. Sex in fungi. Annu. Rev. Genet. 45, 405–430 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Phadke, S. S., Feretzaki, M., Clancey, S. A., Mueller, O. & Heitman, J. Unisexual reproduction of Cryptococcus gattii. Plos ONE 9, e111089 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Roach, K. C., Feretzaki, M., Sun, S. & Heitman, J. Unisexual reproduction. Adv. Genet. 85, 255–305 (2014).

    PubMed  CAS  Google Scholar 

  7. Wang, L. & Lin, X. Mechanisms of unisexual mating in Cryptococcus neoformans. Fungal Genet. Biol. 48, 651–660 (2011).

    Article  PubMed  Google Scholar 

  8. Fu, C. & Heitman, J. PRM1 and KAR5 function in cell–cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex. PLoS Genet. 13, e1007113 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. McClelland, C. M., Chang, Y. C., Varma, A. & Kwon-Chung, K. J. Uniqueness of the mating system in Cryptococcus neoformans. Trends Microbiol. 12, 208–212 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. Kozubowski, L. & Heitman, J. Profiling a killer, the development of Cryptococcus neoformans. FEMS Microbiol. Rev. 36, 78–94 (2012).

    Article  PubMed  CAS  Google Scholar 

  11. Davidson, R. C., Nichols, C. B., Cox, G. M., Perfect, J. R. & Heitman, J. A. MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Mol. Microbiol. 49, 469–485 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. Lin, X., Jackson, J. C., Feretzaki, M., Xue, C. & Heitman, J. Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite- and same-sex mating in Cryptococcus neoformans. PLoS Genet. 6, e1000953 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hsueh, Y. P. & Shen, W. C. A homolog of Ste6, the a-factor transporter in Saccharomyces cerevisiae, is required for mating but not for monokaryotic fruiting in Cryptococcus neoformans. Eukaryot. Cell 4, 147–155 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chung, S. et al. Molecular analysis of CPRalpha, a MATalpha-specific pheromone receptor gene of Cryptococcus neoformans. Eukaryot. Cell 1, 432–439 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Shen, W. C., Davidson, R. C., Cox, G. M. & Heitman, J. Pheromones stimulate mating and differentiation via paracrine and autocrine signaling in Cryptococcus neoformans. Eukaryot. Cell 1, 366–377 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gyawali, R. et al. Pheromone independent unisexual development in Cryptococcus neoformans. PLoS Genet. 13, e1006772 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhai, B. et al. Congenic strains of the filamentous form of Cryptococcus neoformans for studies of fungal morphogenesis and virulence. Infect. Immun. 81, 2626–2637 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang, L. & Lin, X. Morphogenesis in fungal pathogenicity: shape, size, and surface. PLoS Pathog. 8, e1003027 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang, L., Tian, X., Gyawali, R. & Lin, X. Fungal adhesion protein guides community behaviors and autoinduction in a paracrine manner. Proc. Natl Acad. Sci. USA 110, 11571–11576 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bassler, B. L. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2, 582–587 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. Lee, H., Chang, Y. C., Nardone, G. & Kwonchung, K. J. TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Mol. Microbiol. 64, 591–601 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. Albuquerque, P. et al. Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. mBio 5, 13 (2013).

    Google Scholar 

  23. Homer, C. M. et al. Intracellular action of a secreted peptide required for fungal virulence. Cell Host Microbe 19, 849–864 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lin, X., Hull, C. M. & Heitman, J. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434, 1017–1021 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. Wang, L. G. et al. Morphotype transition and sexual reproduction are genetically associated in a ubiquitous environmental pathogen. PLoS Pathog. 10, e1004185 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang, L., Zhai, B. & Lin, X. The link between morphotype transition and virulence in Cryptococcus neoformans. PLoS Pathog. 8, e1002765 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Goo, E., An, J. H., Kang, Y. & Hwang, I. Control of bacterial metabolism by quorum sensing. Trends Microbiol. 23, 567–576 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. Valbuena, N. & Moreno, S. AMPK phosphorylation by Ssp1 is required for proper sexual differentiation in fission yeast. J. Cell Sci. 125, 2655–2664 (2012).

    Article  PubMed  CAS  Google Scholar 

  29. Esher, S. K., Granek, J. A. & Alspaugh, J. A. Rapid mapping of insertional mutations to probe cell wall regulation in Cryptococcus neoformans. Fungal Genet. Biol. 82, 9–21 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kim, D. E., Chivian, D. & Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32, W526–W531 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Razin, S. V., Borunova, V. V., Maksimenko, O. G. & Kantidze, O. L. Cys2His2 zinc finger protein family: classification, functions, and major members. Biochem. (Mosc.) 77, 217–226 (2012).

    Article  CAS  Google Scholar 

  32. Nobile, C. J. et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148, 126–138 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Alvaro, C. G. & Thorner, J. Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response. J. Biol. Chem. 291, 7788–7795 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Versele, M., Lemaire, K. & Thevelein, J. M. Sex and sugar in yeast: two distinct GPCR systems. EMBO Rep. 2, 574–579 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hsueh, Y. P., Xue, C. & Heitman, J. A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO J. 28, 1220–1233 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Goodenough, U. & Heitman, J. Origins of eukaryotic sexual reproduction. Cold Spring Harb. Perspect. Biol. 6, a016154 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hsueh, Y. P., Xue, C. & Heitman, J. G protein signaling governing cell fate decisions involves opposing Galpha subunits in Cryptococcus neoformans. Mol. Biol. Cell 18, 3237–3249 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. White, J. M. & Rose, M. D. Yeast mating: getting close to membrane merger. Curr. Biol. 11, R16–R20 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. Horowitz, B. S., Zarnowski, R., Sharpee, W. C. & Keller, N. P. Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl. Environ. Microbiol. 74, 5674–5685 (2008).

    Article  CAS  Google Scholar 

  40. Dumitru, R. et al. In vivo and in vitro anaerobic mating in Candida albicans. Eukaryot. Cell 6, 465–472 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chen, H. & Fink, G. R. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 20, 1150–1161 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Honigberg, S. M. & Purnapatre, K. Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J. Cell Sci. 116, 2137–2147 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. Fox, M. E. & Smith, G. R. Control of meiotic recombination in Schizosaccharomyces pombe. Prog. Nucleic Acid. Res. Mol. Biol. 61, 345–378 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. Feng, J. et al. GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics 28, 2782–2788 (2012).

    Article  PubMed  CAS  Google Scholar 

  45. Skene, P. J. & Henikoff, S. A simple method for generating high-resolution maps of genome-wide protein binding. eLife 4, e09225 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Sharma and Wang laboratory members for critical reading, and S. Luo and H. Liu for their assistance in genetic screening. This work was financially supported by the National Science and Technology Major Project (2018ZX10101004), the Key Research Program of the Chinese Academy of Sciences (QYZDB-SSW-SSMC040), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB03), the National Natural Science Foundation of China (Grants 31622004, 31570138, 31501008 and 31501009) and the National Institutes of Health (http://www.niaid.nih.gov/Pages/default.aspx) (R01AI097599 to X.L.). L.W. is a member of the Thousand Talents Program. X.L. holds an Investigator Award in the Pathogenesis of Infectious Disease from the Burroughs Wellcome Fund (http://www.bwfund.org/).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the data analysis. X.T., G.-J.H., P.H., L.C., C.T., Y.-L.C., L.S., W.K., H.X., F.B., B.W., E.Y., X.L. and L.W. designed the experiments. X.T., G.-J.H. and P.H. conducted most of the studies. L.C. and E.Y. conducted most of the bioinformatics assays. Y.-L.C. and B.W. conducted the Rosetta ab initio and comparative modelling. L.S. conducted part of the overexpression plasmids construction. H.X. conducted the subcellular localization analysis. Y.Z. conducted part of the gene deletion experiments. Q.X., F.B., B.W., E.Y., X.L. and L.W. contributed reagents/materials/analysis tools. X.T., G.-J.H., X.L. and L.W. wrote the paper with contributions from all other authors.

Corresponding author

Correspondence to Linqi Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Table 3.

Reporting Summary

Supplementary Table 1

Cryptococcus neoformans XL280α gene expression in response to different signals (mating cue, Qsp1, Qsp2 and Qsp3 peptides).

Supplementary Table 2

Expression profiles of the wild-type strain (XL280α) and the cqs1Δ mutant in the presence of glucose or galactose.

Supplementary Table 4

Genes differentially expressed in the opt1Δ mutant during unisexual mating.

Supplementary Table 5

Genes differentially expressed in the cqs2Δ mutant in the presence or absence of Qsp1 under the mating-inducing condition.

Supplementary Table 6

Strains used in this study.

Supplementary Table 7

Primers used in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., He, GJ., Hu, P. et al. Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide. Nat Microbiol 3, 698–707 (2018). https://doi.org/10.1038/s41564-018-0160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0160-4

  • Springer Nature Limited

This article is cited by

Navigation