Skip to main content
Log in

Tuning spin excitations in magnetic films by confinement

  • Article
  • Published:

From Nature Materials

View current issue Submit your manuscript

Abstract

Spin excitations of magnetic thin films are the founding element for magnetic devices in general. While spin dynamics have been extensively studied in bulk materials, the behaviour in mesoscopic films is less known due to experimental limitations. Here, we employ resonant inelastic X-ray scattering to investigate the spectrum of spin excitations in mesoscopic Fe films, from bulk-like films down to three unit cells. In bulk samples, we find isotropic, dispersive ferromagnons consistent with previous neutron scattering results for bulk single crystals. As the thickness is reduced, these ferromagnetic spin excitations renormalize to lower energies along the out-of-plane direction while retaining their dispersion in the in-plane direction. This thickness dependence is captured by simple Heisenberg model calculations accounting for the confinement in the out-of-plane direction through the loss of Fe bonds. Our findings highlight the effects of mesoscopic scaling on spin dynamics and identify thickness as a knob for fine tuning and controlling magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Fe L3 XAS of Fe films versus thickness and representative RIXS measurement from Fe bulk-like film.
Fig. 2: Momentum dependence of the ferromagnetic spin excitations in the bulk-like Fe film.
Fig. 3: Anisotropic momentum dependence of the spin excitations in Fe films as a function of thickness.
Fig. 4: Confinement effect on the spin excitations in mesoscaled Fe films.

Similar content being viewed by others

Data availability

Data that support the findings of this study are available upon reasonable request from the corresponding authors.

References

  1. Han, W., Maekawa, S. & Xie, X.-C. Spin current as a probe of quantum materials. Nat. Mater. 19, 139–152 (2020).

    Article  CAS  Google Scholar 

  2. Han, J., Zhang, P., Hou, J. T., Siddiqui, S. A. & Liu, L. Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 366, 1121–1125 (2019).

    Article  CAS  Google Scholar 

  3. Cai, K. et al. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat. Electron. 3, 37–42 (2020).

    Article  CAS  Google Scholar 

  4. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  CAS  Google Scholar 

  5. Wang, Y. et al. Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science 366, 1125–1128 (2019).

    Article  CAS  Google Scholar 

  6. Sun, W. et al. Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 10, 3453 (2019).

    Article  Google Scholar 

  7. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Article  Google Scholar 

  8. Rana, B. & Otani, Y. Towards magnonic devices based on voltage-controlled magnetic anisotropy. Commun. Phys. 2, 90 (2019).

    Article  Google Scholar 

  9. Han, W., Otani, Y. & Maekawa, S. Quantum materials for spin and charge conversion. npj Quant. Mater. 3, 27 (2018).

    Article  Google Scholar 

  10. Wang, S. et al. Spin-wave propagation steered by electric field modulated exchange interaction. Sci. Rep. 6, 31783 (2016).

    Article  CAS  Google Scholar 

  11. Brächer, T. et al. Phase-to-intensity conversion of magnonic spin currents and application to the design of a majority gate. Sci. Rep. 6, 38235 (2016).

    Article  Google Scholar 

  12. Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Control of spin-wave phase and wavelength by electric current on the microscopic scale. Appl. Phys. Lett. 95, 262509 (2009).

    Article  Google Scholar 

  13. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    Article  CAS  Google Scholar 

  14. Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2016).

    Article  Google Scholar 

  15. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  16. Nagaoka, Y. Dynamical theory of spin waves in ferromagnetic metals with s-d exchange interaction. Prog. Theor. Phys. 28, 1033–1047 (1962).

    Article  CAS  Google Scholar 

  17. Gall, D. Electron mean free path in elemental metals. J. Appl. Phys. 119, 085101 (2016).

    Article  Google Scholar 

  18. Shirane, G., Minkiewicz, V. J. & Nathans, R. Spin waves in 3d metals. J. Appl. Phys. 39, 383–390 (1968).

    Article  CAS  Google Scholar 

  19. Mook, H. A. & Nicklow, R. M. Neutron scattering investigation of the magnetic excitations in iron. Phys. Rev. B 7, 336–342 (1973).

    Article  CAS  Google Scholar 

  20. Perring, T. G. et al. High-energy spin waves in bcc iron. J. Appl. Phys. 69, 6219–6221 (1991).

    Article  CAS  Google Scholar 

  21. Tranquada, J. M., Xu, G. & Zaliznyak, I. A. Superconductivity, antiferromagnetism, and neutron scattering. J. Magn. Magn. Mater. 350, 148–160 (2014).

    Article  CAS  Google Scholar 

  22. Zhang, Y. et al. Nonmonotonic thickness dependence of spin wave energy in ultrathin Fe films: experiment and theory. Phys. Rev. B 81, 094438 (2010).

    Article  Google Scholar 

  23. Prokop, J. et al. Magnons in a ferromagnetic monolayer. Phys. Rev. Lett. 102, 177206 (2009).

    Article  CAS  Google Scholar 

  24. Zakeri, K., Zhang, Y. & Kirschner, J. Surface magnons probed by spin-polarized electron energy loss spectroscopy. J. Electron Spectrosc. Relat. Phenom. 189, 157–163 (2013).

    Article  CAS  Google Scholar 

  25. Chuang, T.-H. et al. Impact of atomic structure on the magnon dispersion relation: a comparison between Fe(111)/Au/W(110) and Fe(110)/W(110). Phys. Rev. Lett. 109, 207201 (2012).

    Article  Google Scholar 

  26. Grünberg, P., Cottam, M. G., Vach, W., Mayr, C. & Camley, R. E. Brillouin scattering of light by spin waves in thin ferromagnetic films (invited). J. Appl. Phys. 53, 2078–2083 (1982).

    Article  Google Scholar 

  27. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  CAS  Google Scholar 

  28. Hashimoto, Y. et al. All-optical observation and reconstruction of spin wave dispersion. Nat. Commun. 8, 15859 (2017).

    Article  CAS  Google Scholar 

  29. Zhou, K.-J. et al. Persistent high-energy spin excitations in iron-pnictide superconductors. Nat. Commun. 4, 1470 (2013).

    Article  Google Scholar 

  30. Pelliciari, J. et al. Reciprocity between local moments and collective magnetic excitations in the phase diagram of BaFe2(As1−xPx)2. Commun. Phys. 2, 139 (2019).

    Article  Google Scholar 

  31. le Tacon, M. et al. Intense paramagnon excitations in a large family of high-temperature superconductors. Nat. Phys. 7, 725–730 (2011).

    Article  Google Scholar 

  32. Lee, W. S. et al. Asymmetry of collective excitations in electron- and hole-doped cuprate superconductors. Nat. Phys. 10, 883–889 (2014).

    Article  CAS  Google Scholar 

  33. Peng, Y. Y. et al. Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors. Nat. Phys. 13, 1201–1206 (2017).

  34. Suzuki, H. et al. Spin waves and spin-state transitions in a ruthenate high-temperature antiferromagnet. Nat. Mater. 18, 563–567 (2019).

    Article  CAS  Google Scholar 

  35. Brookes, N. B. et al. Spin waves in metallic iron and nickel measured by soft X-ray resonant inelastic scattering. Phys. Rev. B 102, 064412 (2020).

    Article  CAS  Google Scholar 

  36. Dean, M. P. M. et al. Spin excitations in a single La2CuO4 layer. Nat. Mater. 11, 850–854 (2012).

    Article  CAS  Google Scholar 

  37. Bisogni, V. et al. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates. Nat. Commun. 7, 13017 (2016).

    Article  CAS  Google Scholar 

  38. Regan, T. J. et al. Chemical effects at metal/oxide interfaces studied by X-ray-absorption spectroscopy. Phys. Rev. B 64, 214422 (2001).

    Article  Google Scholar 

  39. Jiménez-Villacorta, F., Prieto, C., Huttel, Y., Telling, N. D. & van der Laan, G. X-ray magnetic circular dichroism study of the blocking process in nanostructured iron-iron oxide core-shell systems. Phys. Rev. B 84, 172404 (2011).

    Article  Google Scholar 

  40. Dvorak, J., Jarrige, I., Bisogni, V., Coburn, S. & Leonhardt, W. Towards 10 meV resolution: the design of an ultrahigh resolution soft X-ray RIXS spectrometer. Rev. Sci. Instrum. 87, 115109 (2016).

    Article  Google Scholar 

  41. Bergsma, J., van Dijk, C. & Tocchetti, D. Normal vibrations in α-iron. Phys. Lett. A 24, 270–272 (1967).

    Article  CAS  Google Scholar 

  42. Minkiewicz, V. J., Shirane, G. & Nathans, R. Phonon dispersion relation for iron. Phys. Rev. 162, 528–531 (1967).

    Article  CAS  Google Scholar 

  43. Collins, M. F., Minkiewicz, V. J., Nathans, R., Passell, L. & Shirane, G. Critical and spin-wave scattering of neutrons from iron. Phys. Rev. 179, 417–430 (1969).

    Article  CAS  Google Scholar 

  44. Paul, D. M., Mitchell, P. W., Mook, H. A. & Steigenberger, U. Observation of itinerant-electron effects on the magnetic excitations of iron. Phys. Rev. B 38, 580–582 (1988).

    Article  CAS  Google Scholar 

  45. Lynn, J. W. Temperature dependence of the magnetic excitations in iron. Phys. Rev. B 11, 2624–2637 (1975).

    Article  CAS  Google Scholar 

  46. Magnus, F. et al. Long-range magnetic interactions and proximity effects in an amorphous exchange-spring magnet. Nat. Commun. 7, ncomms11931 (2016).

    Article  CAS  Google Scholar 

  47. Pajda, M., Kudrnovský, J., Turek, I., Drchal, V. & Bruno, P. Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni. Phys. Rev. B 64, 174402 (2001).

    Article  Google Scholar 

  48. Turek, I., Kudrnovský, J., Drchal, V. & Bruno, P. Exchange interactions, spin waves, and transition temperatures in itinerant magnets. Philos. Mag. 86, 1713–1752 (2006).

    Article  CAS  Google Scholar 

  49. Shirane, G., Nathans, R., Steinsvoll, O., Alperin, H. A. & Pickart, S. J. Measurement of the magnon dispersion relation of iron. Phys. Rev. Lett. 15, 146–148 (1965).

    Article  CAS  Google Scholar 

  50. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to J. Hill, C. Mazzoli, J. Tranquada, T. Ziman, M. Stiles, P. Bruno, M. Hybertsen and E. Vescovo for fruitful discussions. J.P. thanks A. Pelliciari for his lifelong support. This work was supported by the US Department of Energy (DOE) Office of Science, Early Career Research Program. Work at Yale University was supported by the US DOE, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0019211. K.G. was supported by the US DOE, Office of Science, Basic Energy Sciences as part of the Computational Materials Science Program. This research used beamline 2-ID of NSLS-II, a US DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. Surface X-ray diffraction measurements were performed at beamline 33-ID-D of the Advanced Photon Source, a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

V.B. conceived the project. J.P., S.L., J.L., Y.G., A.B., I.J. and V.B. performed the RIXS experiments. S.L., C.H.A. and F.J.W. prepared the Fe/MgO thin films and characterized them using SQUID and X-ray reflectometry. V.B. analysed and interpreted the data, with the help of J.P.; K.G. performed the theory calculations. J.P. and V.B. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Jonathan Pelliciari or Valentina Bisogni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Eiji Saitoh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1–2 and Notes 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelliciari, J., Lee, S., Gilmore, K. et al. Tuning spin excitations in magnetic films by confinement. Nat. Mater. 20, 188–193 (2021). https://doi.org/10.1038/s41563-020-00878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00878-0

  • Springer Nature Limited

This article is cited by

Navigation