Skip to main content
Log in

Crystallization by particle attachment is a colloidal assembly process

  • Letter
  • Published:

From Nature Materials

View current issue Submit your manuscript

Abstract

The nucleation of crystals has long been thought to occur through the stochastic association of ions, atoms or molecules to form critical nuclei, which will later grow out to crystals1. Only in the past decade has the awareness grown that crystallization can also proceed through the assembly of different types of building blocks2,3, including amorphous precursors4, primary particles5, prenucleation species6,7, dense liquid droplets8,9 or nanocrystals10. However, the forces that control these alternative pathways are still poorly understood. Here, we investigate the crystallization of magnetite (Fe3O4) through the formation and aggregation of primary particles and show that both the thermodynamics and the kinetics of the process can be described in terms of colloidal assembly. This model allows predicting the average crystal size at a given initial Fe concentration, thereby opening the way to the design of crystals with predefined sizes and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Cryo-TEM of different stages of magnetite formation.
Fig. 2: Quantitative analysis of the TEM images.
Fig. 3: Thermodynamic model.
Fig. 4: Model of the CPA process.

Similar content being viewed by others

Data availability

All data are available from the authors upon reasonable request.

Code availability

All Python and Mathematica scripts used for the theoretical modelling are available from the authors upon reasonable request.

References

  1. Frenkel, J. A general theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phys. 7, 538–547 (1939).

    Article  CAS  Google Scholar 

  2. De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic and geologic environments. Science 349, aaa6760 (2015).

    Article  Google Scholar 

  3. Cölfen, H. & Antionetti, M. Mesocrystals and Nonclassical Crystallization (Wiley, 2008).

  4. Yi‐Yeoun, K. et al. Capillarity creates single‐crystal calcite nanowires from amorphous calcium carbonate. Angew. Chem. Int. Ed. 50, 12572–12577 (2011).

    Article  Google Scholar 

  5. Baumgartner, J. et al. Nucleation and growth of magnetite from solution. Nat. Mater. 12, 310–314 (2013).

    Article  CAS  Google Scholar 

  6. Habraken, W. J. E. M. et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 4, 1507 (2013).

    Article  Google Scholar 

  7. Gebauer, D., Völkel, A. & Cölfen, H. Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008).

    Article  CAS  Google Scholar 

  8. Nielsen, M. H., Aloni, S. & De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158–1162 (2014).

    Article  CAS  Google Scholar 

  9. Smeets, P. J. M. et al. A classical view on nonclassical nucleation. Proc. Natl Acad. Sci. USA 114, E7882–E7890 (2017).

    Article  CAS  Google Scholar 

  10. Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    Article  CAS  Google Scholar 

  11. Cornell, R. M. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley, 2006).

  12. Lin, W. et al. Origin of microbial biomineralization and magnetotaxis during the archean. Proc. Natl Acad. Sci. USA 114, 2171–2176 (2017).

    Article  CAS  Google Scholar 

  13. Amor, M. et al. Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria. Science 352, 705–708 (2016).

    Article  CAS  Google Scholar 

  14. Macouin, M. et al. Is the Neoproterozoic oxygen burst a supercontinent legacy. Front. Earth Sci. 3, 44 (2015).

    Article  Google Scholar 

  15. Laurent, S. et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem. Rev. 108, 2064–2110 (2008).

    Article  CAS  Google Scholar 

  16. Goya, G. F., Berquó, T. S., Fonseca, F. C. & Morales, M. P. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003).

    Article  CAS  Google Scholar 

  17. Altan, C. L. et al. Partial oxidation as a rational approach to kinetic control in bioinspired magnetite synthesis. Chem. Eur. J. 21, 6150–6156 (2015).

    Article  CAS  Google Scholar 

  18. Sun, S., Gebauer, D. & Cölfen, H. Alignment of amorphous iron oxide clusters: a non-classical mechanism for magnetite formation. Angew. Chem. Int. Ed. 56, 4042–4046 (2017).

    Article  CAS  Google Scholar 

  19. Bernal, J. D., Dasgupta, D. R. & Mackay, A. L. The oxides and hydroxides of iron and their structural interrelationships. Clay Miner. Bull. 4, 15–30 (1959).

    Article  CAS  Google Scholar 

  20. Dey, A., Lenders, J. J. M. & Sommerdijk, N. A. J. M. Bioinspired magnetite formation from a disordered ferrihydrite-derived precursor. Faraday Discuss. 179, 215–225 (2015).

    Article  CAS  Google Scholar 

  21. Janney, D. E., Cowley, J. M. & Buseck, P. R. Transmission electron microscopy of synthetic 2- and 6-line ferrihydrite. Clays Clay Miner. 48, 111–119 (2000).

    Article  CAS  Google Scholar 

  22. Özdemir, Ö., Dunlop, D. J. & Moskowitz, B. M. Changes in remanence, coercivity and domain state at low temperature in magnetite. Earth Planet. Sci. Lett. 194, 343–358 (2002).

    Article  Google Scholar 

  23. Feng, B., Yong, A. K. & An, H. Effect of various factors on the particle size of calcium carbonate formed in a precipitation process. Mater. Sci. Eng. A 445, 170–179 (2007).

    Article  Google Scholar 

  24. Wei, S. H., Mahuli, S. K., Agnihotri, R. & Fan, L. S. High surface area calcium carbonate: pore structural properties and sulfation characteristics. Ind. Eng. Chem. Res. 36, 2141–2148 (1997).

    Article  CAS  Google Scholar 

  25. McHale, J. M., Auroux, A., Perrotta, A. J. & Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788–791 (1997).

    Article  CAS  Google Scholar 

  26. Zhang, H., De Yoreo, J. J. & Banfield, J. F. A unified description of attachment-based crystal growth. ACS Nano 8, 6526–6530 (2014).

    Article  CAS  Google Scholar 

  27. Zhang, H. & Banfield, J. F. Interatomic coulombic interactions as the driving force for oriented attachment. CrystEngComm 16, 1568–1578 (2014).

    Article  CAS  Google Scholar 

  28. Atkins, P. & Overton, T. Shriver and Atkins’ Inorganic Chemistry (Oxford Univ. Press, 2010).

  29. Derjaguin, B. & Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 43, 30–59 (1993).

    Article  Google Scholar 

  30. Verwey, E. J. W. Theory of the stability of lyophobic colloids. J. Phys. Colloid Chem. 51, 631–636 (1947).

    Article  CAS  Google Scholar 

  31. Penn, R. L. & Banfield, J. F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim. Cosmochim. Acta 63, 1549–1557 (1999).

    Article  CAS  Google Scholar 

  32. Ribeiro, C., Lee, E. J. H., Longo, E. & Leite, E. R. Oriented attachment mechanism in anisotropic nanocrystals: a ‘polymerization’ approach. ChemPhysChem 7, 664–670 (2006).

    Article  CAS  Google Scholar 

  33. Cademartiri, L., Guerin, G., Bishop, K. J. M., Winnik, M. A. & Ozin, G. A. Polymer-like conformation and growth kinetics of Bi2S3 nanowires. J. Am. Chem. Soc. 134, 9327–9334 (2012).

    Article  CAS  Google Scholar 

  34. Leunissen, M. E., Vutukuri, H. R. & van Blaaderen, A. Directing colloidal self-assembly with biaxial electric fields. Adv. Mater. 21, 3116–3120 (2009).

    Article  CAS  Google Scholar 

  35. de Nijs, B. et al. Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement. Nat. Mater. 14, 56–60 (2014).

    Article  Google Scholar 

  36. Vos, M. R., Bomans, P. H. H., Frederik, P. M. & Sommerdijk, N. A. J. M. The development of a glove-box/Vitrobot combination: air–water interface events visualized by cryo-TEM. Ultramicroscopy 108, 1478–1483 (2008).

    Article  CAS  Google Scholar 

  37. van de Put, M. W. P. et al. Graphene oxide single sheets as substrates for high resolution cryoTEM. Soft Matter 11, 1265–1270 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Tuinier and J. Landman for useful discussions. A.I. thanks the Python community for their effort in developing open-source scientific resources. The work of G.M. is supported by the Technology Foundation STW, Applied Science Division of the Netherlands Organization for Scientific Research (NWO). The work by A.A. was supported by a Grant-in-Aid for Scientific Research (B) (no. 18H01794) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Contributions

N.A.J.M.S. and G.M. conceived and designed the experiments. G.M. performed the synthetic experiments. G.M., H.F. and P.H.H.B. conceived and designed the TEM and cryo-TEM experiments. G.M. and P.H.H.B. performed the TEM and cryo-TEM acquisition and analysis. A.I. developed the theoretical model. G.d.W. supervised the theoretical modelling. A.A. and T.Y. performed the vibrating sample magnetometry analysis. N.A.J.M.S., G.d.W., G.M. and A.I. contributed to writing the manuscript.

Corresponding author

Correspondence to Nico A. J. M. Sommerdijk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials, discussions 1–3, Tables 1–3, Figs. 1–9 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirabello, G., Ianiro, A., Bomans, P.H.H. et al. Crystallization by particle attachment is a colloidal assembly process. Nat. Mater. 19, 391–396 (2020). https://doi.org/10.1038/s41563-019-0511-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0511-4

  • Springer Nature Limited

This article is cited by

Navigation