Skip to main content
Log in

Arc volcano activity driven by small-scale metasomatism of the magma source

  • Article
  • Published:

From Nature Geoscience

View current issue Submit your manuscript

Abstract

Arc volcanism arises from the release of fluids from the descending slab, which enables melting in the mantle wedge by lowering the solidus temperature. Metasomatism—compositional alteration by fluids—of the mantle is known to have an important role in magma production in volcanic arcs over long spatial and temporal scales. However, the episodic eruption of individual arc volcanoes is generally thought to be regulated primarily by the evolution and recharge of crustal magma reservoirs, with no established link to mantle processes. Here we show a link between eruptive activity in the 1999–2016 eruption sequence of Tungurahua volcano in Ecuador and small-scale metasomatism of the magma source. From high-resolution time series of the Pb and Sr isotopic composition of ashes, we determine that during the eruption sequence, the average rate of magma production varies logarithmically with the degree of source metasomatism, and that the sequence ended because of the exhaustion of the metasomatized source during its final weeks. Such an association points to mantle metasomatism over short spatial and temporal scales regulating magma production and ultimately eruptive activity of Tungurahua volcano. The influence of metasomatism on individual eruptions has been recognized for basaltic shield volcanoes, but our findings suggest that it is also a plausible mechanism to produce long-lasting eruptions at andesitic arc volcanoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Location maps.
Fig. 2: History and sampling of the 1999–2016 eruption sequence of the Tungurahua volcano.
Fig. 3: Pb and Sr isotopic composition of ash samples plotted against time.
Fig. 4: Temporal evolution of eruptive activity and deep source components.
Fig. 5: Temporal evolution of crustal components.
Fig. 6: Rate of deep magma supply plotted against magma source components.

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article (and its Supplementary Information files). Data are also available from the EarthChem repository (https://doi.org/10.26022/IEDA/112767).

References

  1. Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

    Article  Google Scholar 

  2. Rutherford, M. J., Sigurdsson, H., Carey, S. & Davis, A. The May 18, 1980, eruption of Mount St. Helens. 1. Melt composition and experimental phase equilibria. J. Geophys. Res. 90, 2929–2947 (1985).

    Article  Google Scholar 

  3. Moore, G. & Carmichael, I. S. E. The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib. Mineral. Petrol. 130, 304–319 (1998).

    Article  Google Scholar 

  4. Andujar, J., Scaillet, B., Pichavant, M. & Druitt, T. H. Differentiation conditions of a basaltic magma from Santorini, and its bearing on the production of andesite in arc settings. J. Petrol. 56, 765–794 (2015).

    Article  Google Scholar 

  5. Ginibre, C., Wörner, G. & Kronz, A. Crystal zoning as an archive for magma evolution. Elements 3, 261–266 (2007).

    Article  Google Scholar 

  6. Morgan, D. J. et al. Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planet. Sci. Lett. 222, 933–946 (2004).

    Article  Google Scholar 

  7. Turner, S. & Costa, F. Measuring timescales of magmatic evolution. Elements 3, 267–272 (2007).

    Article  Google Scholar 

  8. Corsaro, R. A. & Pompilio, M. Magma dynamics in the shallow plumbing system of Mt. Etna as recorded by compositional variations in volcanics of recent summit activity (1995–1999). J. Volcanol. Geotherm. Res. 137, 55–71 (2004).

    Article  Google Scholar 

  9. Turner, S. J., Izbekov, P. & Langmuir, C. The magma plumbing system of Bezymianny volcano: insights from a 54 year time series of trace element whole-rock geochemistry and amphibole compositions. J. Volcanol. Geotherm. Res. 263, 108–121 (2013).

    Article  Google Scholar 

  10. Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article  Google Scholar 

  11. Till, C. B. et al. The causes of spatiotemporal variations in erupted fluxes and compositions along a volcanic arc. Nat. Commun. 10, 1350 (2019).

    Article  Google Scholar 

  12. Colucci, S. & Papale, P. Deep magma transport control on the size and evolution of explosive volcanic eruptions. Front. Earth Sci. 9, 681083 (2021).

    Article  Google Scholar 

  13. Champenois, J. et al. Large-scale inflation of Tungurahua volcano (Ecuador) revealed by persistent scatterers SAR interferometry. Geophys. Res. Lett. 41, 5821–5828 (2014).

    Article  Google Scholar 

  14. Muller, C. et al. Temporal evolution of the magmatic system at Tungurahua volcano, Ecuador, detected by geodetic observations. J. Volcanol. Geotherm. Res. 368, 63–72 (2018).

    Article  Google Scholar 

  15. Bablon, M. et al. Eruptive chronology of Tungurahua volcano (Ecuador) revisited based on new K–Ar ages and geomorphological reconstructions. J. Volcanol. Geotherm. Res. 357, 378–398 (2018).

    Article  Google Scholar 

  16. Nauret, F. et al. The genetic relationship between andesites and dacites at Tungurahua volcano, Ecuador. J. Volcanol. Geotherm. Res. 349, 283–297 (2018).

    Article  Google Scholar 

  17. Hall, M. L., Robin, C., Beate, B., Mothes, P. & Monzier, M. Tungurahua volcano, Ecuador: structure, eruptive history and hazards. J. Volcanol. Geotherm. Res. 91, 1–21 (1999).

    Article  Google Scholar 

  18. Le Pennec, J.-L. et al. The AD 1300–1700 eruptive periods at Tungurahua volcano, Ecuador, revealed by historical narratives, stratigraphy and radiocarbon dating. J. Volcanol. Geotherm. Res. 176, 70–81 (2008).

    Article  Google Scholar 

  19. Le Pennec, J.-L. et al. Impact of tephra falls on Andean communities: the influences of eruption size and weather conditions during the 1999–2001 activity of Tungurahua volcano. Ecuad. J. Volcanol. Geotherm. Res. 217218, 91–103 (2012).

    Article  Google Scholar 

  20. Wright, H. M. N. et al. Estimating rates of decompression from textures of erupted ash particles produced by 1999–2006 eruptions of Tungurahua volcano, Ecuador. Geology 40, 619–622 (2012).

    Article  Google Scholar 

  21. Arellano, S. R. et al. Degassing patterns of Tungurahua volcano (Ecuador) during the 1999–2006 eruptive period, inferred from remote spectroscopic measurements of SO2 emissions. J. Volcanol. Geotherm. Res. 176, 151–162 (2008).

    Article  Google Scholar 

  22. Samaniego, P., Le Pennec, J. L., Robin, C. & Hidalgo, S. Petrological analysis of the pre-eruptive magmatic process prior to the 2006 explosive eruptions at Tungurahua volcano (Ecuador). J. Volcanol. Geotherm. Res. 199, 69–84 (2011).

    Article  Google Scholar 

  23. Eychenne, J., Le Pennec, J. L., Ramon, P. & Yepes, H. Dynamics of explosive paroxysms at open-vent andesitic systems: high-resolution mass distribution analyses of the 2006 Tungurahua fall deposit (Ecuador). Earth Planet. Sci. Lett. 361, 343–355 (2013).

    Article  Google Scholar 

  24. Myers, M. L. et al. Replenishment of volatile-rich mafic magma into a degassed chamber drives mixing and eruption of Tungurahua volcano. Bull. Volcanol. 76, 872 (2014).

    Article  Google Scholar 

  25. Hidalgo, S. et al. SO2 degassing at Tungurahua volcano (Ecuador) between 2007 and 2013: transition from continuous to episodic activity. J. Volcanol. Geotherm. Res. 298, 1–14 (2015).

    Article  Google Scholar 

  26. Ancellin, M.-A. et al. Across-arc versus along-arc Sr–Nd–Pb isotope variations in the Ecuadorian volcanic arc. Geochem. Geophys. Geosyst. 18, e2016GC006679 (2017).

    Article  Google Scholar 

  27. Straub, S. M. et al. Formation of hybrid arc andesites beneath thick continental crust. Earth Planet. Sci. Lett. 303, 337–347 (2011).

    Article  Google Scholar 

  28. Narvaez, D., Rose-Koga, E., Samaniego, P., Koga, K. & Hidalgo, S. Constraining magma sources using primitive olivine-hosted melt inclusions from Puñalica and Sangay volcanoes (Ecuador). Contrib. Mineral. Petrol. 173, 80 (2018).

    Article  Google Scholar 

  29. Smith, D. J. Clinopyroxene precursors to amphibole sponge in arc crust. Nat. Commun. 5, 4329 (2014).

    Article  Google Scholar 

  30. Chiaradia, M., Müntener, O., Beate, B. & Fontignie, D. Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contrib. Mineral. Petrol. 158, 563–588 (2009).

    Article  Google Scholar 

  31. Bourdon, E. et al. Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth Planet. Sci. Lett. 205, 123–138 (2003).

    Article  Google Scholar 

  32. Le Voyer, M., Rose-Koga, E. F., Laubier, M. & Schiano, P. Petrogenesis of arc lavas from the Rucu Pichincha and Pan de Azucar volcanoes (Ecuadorian arc): major, trace element, and boron isotope evidences from olivine-hosted melt inclusions. Geochem. Geophys. Geosyst. 9, e2008GC002173 (2008).

    Article  Google Scholar 

  33. Hidalgo, S. et al. Adakitic magmas in the Ecuadorian volcanic front: petrogenesis of the Iliniza volcanic complex (Ecuador). J. Volcanol. Geotherm. Res. 159, 366–392 (2007).

    Article  Google Scholar 

  34. Samaniego, P., Robin, C., Chazot, G., Bourdon, E. & Cotten, J. Evolving metasomatic agent in the northern Andean subduction zone, deduced from magma composition of the long-lived Pichincha volcanic complex (Ecuador). Contrib. Mineral. Petrol. 160, 239–260 (2010).

    Article  Google Scholar 

  35. Pietruszka, A. J., Rubin, K. H. & Garcia, M. O. 226Ra–230Th–238U disequilibria of historical Kilauea lavas (1790–1982) and the dynamics of mantle melting within the Hawaiian plume. Earth Planet. Sci. Lett. 186, 15–31 (2001).

    Article  Google Scholar 

  36. Vlastélic, I. et al. Control of source fertility on the eruptive activity of Piton de la Fournaise volcano, La Réunion. Sci. Rep. 8, 14478 (2018).

    Article  Google Scholar 

  37. Andújar, J. et al. Structure of the plumbing system at Tungurahua volcano, Ecuador: insights from phase equilibrium experiments on July–August 2006 eruption products. J. Petrol. 58, 1249–1278 (2017).

    Article  Google Scholar 

  38. Koch, C. D. et al. Crustal thickness and magma storage beneath the Ecuadorian arc. J. South Am. Earth Sci. 110, 103331 (2021).

    Article  Google Scholar 

  39. Kelemen, P. B., Shimizu, N. & Salters, V. J. M. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375, 747–753 (1995).

    Article  Google Scholar 

  40. Keller, T. & Katz, R. F. The role of volatiles in reactive melt transport in the asthenosphere. J. Petrol. 57, 1073–1108 (2016).

    Article  Google Scholar 

  41. Müntener, O., Kelemen, P. B. & Grove, T. L. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib. Mineral. Petrol. 141, 643–658 (2001).

    Article  Google Scholar 

  42. Rawson, H. et al. Compositional variability in mafic arc magmas over short spatial and temporal scales: evidence for the signature of mantle reactive melt channels. Earth Planet. Sci. Lett. 456, 66–77 (2016).

    Article  Google Scholar 

  43. Paulatto, M. et al. Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles. Nat. Commun. 8, 15980 (2017).

    Article  Google Scholar 

  44. Ruprecht, P. & Plank, T. Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500, 68–72 (2013).

    Article  Google Scholar 

  45. Mattioli, M., Renzulli, A., Menna, M. & Holm, P. M. Rapid ascent and contamination of magmas through the thick crust of the CVZ (Andes, Ollagüe region): evidence from a nearly aphyric high-K andesite with skeletal olivines. J. Volcanol. Geotherm. Res. 158, 87–105 (2006).

    Article  Google Scholar 

  46. Marsh, B. D. On the cooling of ascending andesitic magma. Phil. Trans. R. Soc. Lond. A 288, 611–625 (1978).

    Article  Google Scholar 

  47. Albarède, F. Residence time analysis of geochemical fluctuations in volcanic series. Geochim. Cosmochim. Acta 57, 615–621 (1993).

    Article  Google Scholar 

  48. Koulakov, I. et al. Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography. J. Volcanol. Geotherm. Res. 263, 75–91 (2013).

    Article  Google Scholar 

  49. Moussallam, Y. et al. Fast ascent rate during the 2017–2018 Plinian eruption of Ambae (Aoba) volcano: a petrological investigation. Contrib. Mineral. Petrol. 174, 90 (2019).

    Article  Google Scholar 

  50. Turner, S., Evans, P. & Hawkesworth, C. Ultrafast source-to-surface movement of melt at island arcs from 226Ra–230Th systematics. Science 292, 1363–1366 (2001).

    Article  Google Scholar 

  51. Tamura, Y., Tatsumi, Y., Zhao, D., Kido, Y. & Shukuno, H. Hot fingers in the mantle wedge: new insights into magma genesis in subduction zones. Earth Planet. Sci. Lett. 197, 105–116 (2002).

    Article  Google Scholar 

  52. Vlastélic, I. et al. Probing the hidden magmatic evolution of El Misti volcano (Peru) with the Pb isotope composition of fumaroles. Bull. Volcanol. 84, 17 (2022).

    Article  Google Scholar 

  53. Bustillos, A. J., Romero, J. E., Guevara, C. A. & Díaz-Alvarado, J. Tephra fallout from the long-lasting Tungurahua eruptive cycle (1999–2014): variations through eruptive style transition and deposition processes. Andean Geol. 45, 47–77 (2018).

    Article  Google Scholar 

  54. Bernard, B. Homemade ashmeter: a low-cost, high-efficiency solution to improve tephra field-data collection for contemporary explosive eruptions. J. Appl. Volcanol. 2, 1 (2013).

    Article  Google Scholar 

  55. Deniel, C. & Pin, C. Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Anal. Chim. Acta 426, 95–103 (2001).

    Article  Google Scholar 

  56. Todt, W., Cliff, R. A., Hanser, A. & Hofmann, A. W. in Earth Processes: Reading the Isotopic Code (eds Basu, A. & Hart, S.) 429–437 (Geophysical Monograph Series 95, AGU, 1996).

  57. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article  Google Scholar 

  58. Bustillos, J., Romero, J., Troncoso, L. & Guevara, A. Tephra fall at Tungurahua Volcano (Ecuador) - 1999–2014: an example of tephra accumulation from a long-lasting eruptive cycle. Geofís. Int. 55, 55–67 (2016).

    Google Scholar 

  59. Bernard, J., Eychenne, J., Le Pennec, J.-L. & Narvaez, D. Mass budget partitioning during explosive eruptions: insights from the 2006 paroxysm of Tungurahua volcano, Ecuador. Geochem. Geophys. Geosyst. 17, 3224–3240 (2016).

    Article  Google Scholar 

  60. Kelfoun, K. & Vallejo, S. VolcFlow capabilities and potential development for the simulation of lava. Geol. Soc. Lond. Spec. Publ. 426, 337–343 (2016).

    Article  Google Scholar 

  61. Yaguana, D. Geomorphological Evolution of the Tungurahua Volcano Crater: Eruptive Period Between 2002 and 2016. PhD thesis, National Polytechnic School (2020); http://bibdigital.epn.edu.ec/handle/15000/21245

Download references

Acknowledgements

This work is part of the ‘Laboratoire Mixte International’ programme entitled ‘Seismes et Volcans dans les Andes du Nord’. The research was financed by the Institut de Recherche pour le Développement, the French Government Laboratory of Excellence initiative number ANR-10-LABX-0006, the Region Auvergne and the European Regional Development Fund. This is Laboratory of Excellence ClerVolc contribution number 581. Tungurahua volcano monitoring was supported by Ecuadorian Government Project SENPLADES: Generación de Capacidades para la Emisión de Alertas Tempranas.

Author information

Authors and Affiliations

Authors

Contributions

I.V. designed the study, coordinated the analyses and wrote the paper. N.S. performed the isotopic analyses and wrote the paper. P.S. designed the study and contributed to data interpretation. B.B. collected samples and contributed to data interpretation. F.N. and S.H. contributed to the discussions and interpretation of the data. D.A. supervised Sr isotope measurements. A.G. supervised Pb isotope measurements

Corresponding author

Correspondence to I. Vlastélic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Jorge E. Romero, Simon Turner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editors: Stefan Lachowycz and Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

Sr–Pb isotope composition of juvenile ash samples from the 1999–2016 eruptions of Tungurahua volcano.

Supplementary Table 2

Compositions of the four end-member components used in the mixing model.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlastélic, I., Sainlot, N., Samaniego, P. et al. Arc volcano activity driven by small-scale metasomatism of the magma source. Nat. Geosci. 16, 363–370 (2023). https://doi.org/10.1038/s41561-023-01143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01143-0

  • Springer Nature Limited

This article is cited by

Navigation