Skip to main content

Advertisement

Log in

Sulfur isotopic signature of Earth established by planetesimal volatile evaporation

  • Article
  • Published:

From Nature Geoscience

View current issue Submit your manuscript

Abstract

How and when Earth’s volatile content was established is controversial with several mechanisms postulated, including planetesimal evaporation, core formation and the late delivery of undifferentiated chondrite-like materials. The isotopes of volatile elements such as sulfur can be fractionated during planetary accretion and differentiation and thus are potential tracers of these processes. Using first-principles calculations, we examine sulfur isotope fractionation during core formation and planetesimal evaporation. We find no measurable sulfur isotope fractionation between silicate and metallic melts at core-forming conditions, indicating that the observed light sulfur isotope composition of the bulk silicate Earth relative to chondrites cannot be explained by metal–silicate fractionation. Our thermodynamic calculations show that sulfur evaporates mostly as H2S during planetesimal evaporation when nebular H2 is present. The observed bulk Earth sulfur isotope signature and abundance can be reproduced by evaporative loss of about 90% sulfur mainly as H2S from molten planetesimals before nebular H2 is dissipated. The heavy sulfur isotope composition of the Moon relative to the Earth is consistent with evaporative sulfur loss under 94–98% saturation condition during the Moon-forming giant impact. In summary, volatile evaporation from molten planetesimals before Earth’s formation probably played a key role in establishing Earth’s volatile element content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Sulfur isotope compositions (δ34S) of planetary materials.
Fig. 2: Equilibrium sulfur isotope fractionation factors (103lnα of 34S/32S) between silicate and metallic melts.
Fig. 3: Sulfur isotope fractionation caused by volatile loss during planetesimal evaporation and the Moon-forming impact.
Fig. 4: Schematic diagram of sulfur isotopic behaviours during evaporation on small precursor bodies and during the Moon-forming impact.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the article and Supplementary Information files. All new data associated with this paper will be made publicly available at https://doi.org/10.6084/m9.figshare.16566336.v1.

Code availability

The Vienna Ab Initio Simulation Package is a proprietary software available for purchase at https://www.vasp.at/.

References

  1. Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    Article  Google Scholar 

  2. Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006).

    Article  Google Scholar 

  3. Schonbachler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. Heterogeneous accretion and the moderately volatile element budget of Earth. Science 328, 884–887 (2010).

    Article  Google Scholar 

  4. Kleine, T. et al. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009).

    Article  Google Scholar 

  5. Norris, C. A. & Wood, B. J. Earth’s volatile contents established by melting and vaporization. Nature 549, 507–510 (2017).

    Article  Google Scholar 

  6. Hin, R. C. et al. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549, 511–527 (2017).

    Article  Google Scholar 

  7. Rose-Weston, L., Brenan, J. M., Fei, Y., Secco, R. A. & Frost, D. J. Effect of pressure, temperature, and oxygen fugacity on the metal–silicate partitioning of Te, Se, and S: implications for Earth differentiation. Geochim. Cosmochim. Acta 73, 4598–4615 (2009).

    Article  Google Scholar 

  8. Boujibar, A. et al. Metal–silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion. Earth Planet. Sci. Lett. 391, 42–54 (2014).

    Article  Google Scholar 

  9. Suer, T.-A., Siebert, J., Remusat, L., Menguy, N. & Fiquet, G. A sulfur-poor terrestrial core inferred from metal–silicate partitioning experiments. Earth Planet. Sci. Lett. 469, 84–97 (2017).

    Article  Google Scholar 

  10. O’Neill, H. S. The origin of the Moon and the early history of the Earth—a chemical model. Part 1: the Moon. Geochim. Cosmochim. Acta 55, 1135–1157 (1991).

    Article  Google Scholar 

  11. Braukmüller, N., Wombacher, F., Funk, C. & Münker, C. Earth’s volatile element depletion pattern inherited from a carbonaceous chondrite-like source. Nat. Geosci. 12, 564–568 (2019).

    Article  Google Scholar 

  12. Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    Article  Google Scholar 

  13. Wang, Z. & Becker, H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499, 328–331 (2013).

    Article  Google Scholar 

  14. Yierpan, A., König, S., Labidi, J. & Schoenberg, R. Selenium isotope and S–Se–Te elemental systematics along the Pacific–Antarctic ridge: role of mantle processes. Geochim. Cosmochim. Acta 249, 199–224 (2019).

    Article  Google Scholar 

  15. Labidi, J., Cartigny, P. & Moreira, M. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501, 208–211 (2013).

    Article  Google Scholar 

  16. Labidi, J., Cartigny, P., Hamelin, C., Moreira, M. & Dosso, L. Sulfur isotope budget (32S, 33S, 34S and 36S) in Pacific–Antarctic ridge basalts: a record of mantle source heterogeneity and hydrothermal sulfide assimilation. Geochim. Cosmochim. Acta 133, 47–67 (2014).

    Article  Google Scholar 

  17. Gao, X. & Thiemens, M. H. Isotopic composition and concentration of sulfur in carbonaceous chondrites. Geochim. Cosmochim. Acta 57, 3159–3169 (1993).

    Article  Google Scholar 

  18. Gao, X. & Thiemens, M. H. Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites. Geochim. Cosmochim. Acta 57, 3171–3176 (1993).

    Article  Google Scholar 

  19. Labidi, J., Farquhar, J., Alexander, C. M. O. D., Eldridge, D. L. & Oduro, H. Mass independent sulfur isotope signatures in CMs: implications for sulfur chemistry in the early Solar System. Geochim. Cosmochim. Acta 196, 326–350 (2017).

    Article  Google Scholar 

  20. Labidi, J. et al. Experimentally determined sulfur isotope fractionation between metal and silicate and implications for planetary differentiation. Geochim. Cosmochim. Acta 175, 181–194 (2016).

    Article  Google Scholar 

  21. Fischer, R. A. et al. High pressure metal–silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochim. Cosmochim. Acta 167, 177–194 (2015).

    Article  Google Scholar 

  22. Sanloup, C. et al. Structural change in molten basalt at deep mantle conditions. Nature 503, 104–107 (2013).

    Article  Google Scholar 

  23. Sun, N., Stixrude, L., Koker, Nde & Karki, B. B. First principles molecular dynamics simulations of diopside (CaMgSi2O6) liquid to high pressure. Geochim. Cosmochim. Acta 75, 3792–3802 (2011).

    Article  Google Scholar 

  24. De Koker, N. Structure, thermodynamics, and diffusion in CaAl2Si2O8 liquid from first-principles molecular dynamics. Geochim. Cosmochim. Acta 74, 5657–5671 (2010).

    Article  Google Scholar 

  25. McEwing, C., Thode, H. & Rees, C. Sulphur isotope effects in the dissociation and evaporation of troilite: a possible mechanism for 34S enrichment in lunar soils. Geochim. Cosmochim. Acta 44, 565–571 (1980).

    Article  Google Scholar 

  26. Young, E. D. et al. Near-equilibrium isotope fractionation during planetesimal evaporation. Icarus 323, 1–15 (2019).

    Article  Google Scholar 

  27. Bigeleisen, J. & Mayer, M. G. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15, 261 (1947).

    Article  Google Scholar 

  28. Nash, W. M., Smythe, D. J. & Wood, B. J. Compositional and temperature effects on sulfur speciation and solubility in silicate melts. Earth Planet. Sci. Lett. 507, 187–198 (2019).

    Article  Google Scholar 

  29. Jugo, P. J., Wilke, M. & Botcharnikov, R. E. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity. Geochim. Cosmochim. Acta 74, 5926–5938 (2010).

    Article  Google Scholar 

  30. Wadhwa, M. Redox conditions on small bodies, the Moon and Mars. Rev. Mineral. Geochem. 68, 493–510 (2008).

    Article  Google Scholar 

  31. McCammon, C. Geochemistry: the paradox of mantle redox. Science 308, 807–808 (2005).

    Article  Google Scholar 

  32. Rubie, D. C., Nimmo, F. & Melosh, H. J. in Treatise on Geophysics 2nd edn, Vol. 9 (ed. Schubert, G.) 43–79 (Elsevier, 2015); https://doi.org/10.1016/B978-0-444-53802-4.00154-8

  33. Righter, K. Prediction of metal–silicate partition coefficients for siderophile elements: an update and assessment of PT conditions for metal–silicate equilibrium during accretion of the Earth. Earth Planet. Sci. Lett. 304, 158–167 (2011).

    Article  Google Scholar 

  34. Rubie, D. C. et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015).

    Article  Google Scholar 

  35. Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5, eaau3669 (2019).

    Article  Google Scholar 

  36. Varas-Reus, M. I., König, S., Yierpan, A., Lorand, J.-P. & Schoenberg, R. Selenium isotopes as tracers of a late volatile contribution to Earth from the outer Solar System. Nat. Geosci. 12, 779–782 (2019).

    Article  Google Scholar 

  37. Sharp, Z. D. Nebular ingassing as a source of volatiles to the terrestrial planets. Chem. Geol. 448, 137–150 (2017).

    Article  Google Scholar 

  38. McDonough, W. F. & Sun, S.-s The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  39. Mann, U., Frost, D. J., Rubie, D. C., Becker, H. & Audétat, A. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures—implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochim. Cosmochim. Acta 84, 593–613 (2012).

    Article  Google Scholar 

  40. Nie, N. X. & Dauphas, N. Vapor drainage in the protolunar disk as the cause for the depletion in volatile elements of the Moon. Astrophys. J. Lett. 884, L48 (2019).

    Article  Google Scholar 

  41. Wang, K. & Jacobsen, S. B. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature 538, 487–490 (2016).

    Article  Google Scholar 

  42. Paniello, R. C., Day, J. M. D. & Moynier, F. Zinc isotopic evidence for the origin of the Moon. Nature 490, 376–379 (2012).

    Article  Google Scholar 

  43. Lock, S. J. et al. The origin of the Moon within a terrestrial synestia. J. Geophys. Res. Planets 123, 910–951 (2018).

    Article  Google Scholar 

  44. Schaefer, L., Lodders, K. & Fegley, B. Vaporization of the Earth: application to exoplanet atmospheres. Astrophys. J. 755, 41 (2012).

    Article  Google Scholar 

  45. Day, J. M. D. Geochemical constraints on residual metal and sulfide in the sources of lunar mare basalts. Am. Mineral. 103, 1734–1740 (2018).

    Article  Google Scholar 

  46. Saal, A. E. & Hauri, E. H. Large sulfur isotope fractionation in lunar volcanic glasses reveals the magmatic differentiation and degassing of the Moon. Sci. Adv. 7, 1–12 (2021).

    Article  Google Scholar 

  47. Wing, B. A. & Farquhar, J. Sulfur isotope homogeneity of lunar mare basalts. Geochim. Cosmochim. Acta 170, 266–280 (2015).

    Article  Google Scholar 

  48. Franz, H. B. et al. Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars. Nature 508, 364–368 (2014).

    Article  Google Scholar 

  49. Rai, V. K., Jackson, T. L. & Thiemens, M. H. Photochemical mass-independent sulfur isotopes in achondritic meteorites. Science 309, 1062–1065 (2005).

    Article  Google Scholar 

  50. Wu, N., Farquhar, J., Dottin, J. W. & Magalhães, N. Sulfur isotope signatures of eucrites and diogenites. Geochim. Cosmochim. Acta 233, 1–13 (2018).

    Article  Google Scholar 

  51. Defouilloy, C., Cartigny, P., Assayag, N., Moynier, F. & Barrat, J.-A. High-precision sulfur isotope composition of enstatite meteorites and implications of the formation and evolution of their parent bodies. Geochim. Cosmochim. Acta 172, 393–409 (2016).

    Article  Google Scholar 

  52. Antonelli, M. A. et al. Early inner Solar System origin for anomalous sulfur isotopes in differentiated protoplanets. Proc. Natl Acad. Sci. USA 111, 17749–17754 (2014).

    Article  Google Scholar 

  53. Dottin, J. W., Farquhar, J. & Labidi, J. Multiple sulfur isotopic composition of main group pallasites support genetic links to IIIAB iron meteorites. Geochim. Cosmochim. Acta 224, 276–281 (2018).

    Article  Google Scholar 

  54. Wang, W., Wu, Z. & Huang, F. Equilibrium barium isotope fractionation between minerals and aqueous solution from first-principles calculations. Geochim. Cosmochim. Acta 292, 64–77 (2021).

    Article  Google Scholar 

  55. Wang, S.-J. et al. Nickel isotopic evidence for late-stage accretion of Mercury-like differentiated planetary embryos. Nat. Commun. 12, 294 (2021).

    Article  Google Scholar 

  56. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  57. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  58. Caracas, R., Hirose, K., Nomura, R. & Ballmer, M. D. Melt–crystal density crossover in a deep magma ocean. Earth Planet. Sci. Lett. 516, 202–211 (2019).

    Article  Google Scholar 

  59. Petaev, M. I. The GRAINS thermodynamic and kinetic code for modeling nebular condensation. Calphad 33, 317–327 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB41000000), Natural Science Foundation of China (41925017 and 41721002), and the Fundamental Research Funds for the Central Universities (WK2080000144). W.W. acknowledges support from the UCL–Carnegie Postdoctoral Scholarship. S.H. and M.L. acknowledge support from NSF AST-1910955 and EAR-1942042. Part of the calculations were conducted at the Supercomputing Center of the University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

W.W. and C.-H.L. conceived and designed this project. W.W. performed the theoretical calculations. S.H. and M.L. did the GRAINS calculations. W.W. wrote the manuscript with the help of C.-H.L., and all authors contributed to the discussion of the results and revision of the manuscript.

Corresponding authors

Correspondence to Wenzhong Wang or Chun-Hui Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Yuan Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rebecca Neely, in collaboration with the Nature Geoscience team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Radial distribution functions g(r) and coordination numbers (CN) for S-O, S-Mg, and S-Si pairs in Mg32Si32O96SO2 silicate melt at different pressures.

Extended Data Fig. 2

Radial distribution functions g(r) and coordination numbers (CN) for S-O, S-Mg, and S-Si pairs in Mg32Si32O95S silicate melt at different pressures.

Extended Data Fig. 3

Radial distribution function g(r) and coordination number (CN) for S-Fe pair in Fe97S3 metallic melt at different pressures.

Extended Data Fig. 4

Radial distribution function g(r) and coordination number (CN) for S-Mg/Fe/Si/Ca/Al/O in Mg41Ca2Fe5Si32Al4O117 melt at 46.59GPa and S-Fe/Ni/Si/C/O pairs in Fe87Ni4Si10O2C2S3 melt at 41.81GPa.

Extended Data Fig. 5 Average force constants <F > of S in silicate and metallic melts at different pressures.

Mg32Si32O95S and Mg32Si32O96SO2 represent the S-bearing silicate melts under extremely reducing and oxidizing conditions, respectively. The green star and pentagon are the <F > of S in Mg41Ca2Fe5Si32Al4O117S and Fe87Ni4Si10O2C2S3 melts, respectively.

Extended Data Fig. 6

The reduced partition function ratios (103lnβ) of 34S/32S of Fe97S3, Mg32Si32O95S, and Mg32Si32O96SO2 melts at 0, 30, 60, 90GPa.

Extended Data Fig. 7 The fractions of major S species in the vapour phase at 1e-4 bar and different temperatures (1000-1600 K).

(a) solar abundance, (b) solar abundance with H concentration decreased by one order of magnitude, (c) solar abundance with H concentration decreased by four orders of magnitude.

Extended Data Fig. 8 Equilibrium sulfur isotope fractionation factors (103lnαvapor-melt of 34S/32S) between vapour phase and silicate melt (Mg32Si32O95S).

The 103lnβ of silicate melt is derived from the force constant of S in Mg32Si32O95S silicate melt. The 103lnβ of vapour phase is estimated based on the <F > of each important S species (Extended Data Table 1) and their fractions in the vapour phase (Extended Data Table 2).

Supplementary information

Supplementary Information

Supplementary text, Tables 1 and 2 and Figs. 1–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, CH., Brodholt, J.P. et al. Sulfur isotopic signature of Earth established by planetesimal volatile evaporation. Nat. Geosci. 14, 806–811 (2021). https://doi.org/10.1038/s41561-021-00838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00838-6

  • Springer Nature Limited

This article is cited by

Navigation