Skip to main content

Advertisement

Log in

Water availability creates global thresholds in multidimensional soil biodiversity and functions

  • Article
  • Published:

From Nature Ecology & Evolution

View current issue Submit your manuscript

Abstract

Soils support an immense portion of Earth’s biodiversity and maintain multiple ecosystem functions which are essential for human well-being. Environmental thresholds are known to govern global vegetation patterns, but it is still unknown whether they can be used to predict the distribution of soil organisms and functions across global biomes. Using a global field survey of 383 sites across contrasting climatic and vegetation conditions, here we showed that soil biodiversity and functions exhibited pervasive nonlinear patterns worldwide and are mainly governed by water availability (precipitation and potential evapotranspiration). Changes in water availability resulted in drastic shifts in soil biodiversity (bacteria, fungi, protists and invertebrates) and soil functions including plant–microbe interactions, plant productivity, soil biogeochemical cycles and soil carbon sequestration. Our findings highlight that crossing specific water availability thresholds can have critical consequences for the provision of essential ecosystem services needed to sustain our planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Map showing locations of the 383 soil sampling sites included in this study.
Fig. 2: Nonlinear relationships between water availability and the diversity of soil taxa as well as other environmental factors.
Fig. 3: Relationships between soil functions and water availability.

Similar content being viewed by others

Data availability

All the materials, raw data and protocols used in the article are available upon request and without restriction and all data that support the main findings of this study will be made publicly available in Figshare76 upon publication.

Code availability

The data in this study were analysed with publicly available tool packages in R and the figures were produced with R. The R code used in the analysis presented in this paper is available in Figshare76.

References

  1. Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).

    Article  PubMed  Google Scholar 

  2. Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

    Article  PubMed  Google Scholar 

  4. Johnston, A. S. A. et al. Temperature thresholds of ecosystem respiration at a global scale. Nat. Ecol. Evol. 5, 487–494 (2021).

    Article  PubMed  Google Scholar 

  5. Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, C. et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J. 15, 2738–2747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feng, Y. et al. Temperature thresholds drive the global distribution of soil fungal decomposers. Glob. Change Biol. 28, 2779–2789 (2022).

    Article  Google Scholar 

  8. Jarzyna, M. A. & Jetz, W. Taxonomic and functional diversity change is scale dependent. Nat. Commun. 9, 2565 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Martiny, J. B., Eisen, J. A., Penn, K., Allison, S. D. & Horner-Devine, M. C. Drivers of bacterial β-diversity depend on spatial scale. Proc. Natl Acad. Sci. USA 108, 7850–7854 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bastida, F. et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 15, 2081–2091 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zwerschke, N., Bollen, M., Molis, M. & Scrosati, R. A. An environmental stress model correctly predicts unimodal trends in overall species richness and diversity along intertidal elevation gradients. Helgol. Mar. Res. 67, 663–674 (2013).

    Article  Google Scholar 

  13. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Qi, Y., Xu, M. & Wu, J. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises. Ecol. Model. 153, 131–142 (2002).

    Article  CAS  Google Scholar 

  15. Huang, J. P., Yu, H. P., Guan, X. D., Wang, G. Y. & Guo, R. X. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    Article  Google Scholar 

  16. Berdugo, M., Vidiella, B., Sole, R. V. & Maestre, F. T. Ecological mechanisms underlying aridity thresholds in global drylands. Funct. Ecol. 36, 4–23 (2022).

    Article  CAS  Google Scholar 

  17. van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    Article  PubMed  Google Scholar 

  18. Phillips, H. R. P. et al. Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Sci. Data 8, 136 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    Article  CAS  Google Scholar 

  21. Liang, C., Amelung, W., Lehmann, J. & Kastner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).

    Article  Google Scholar 

  22. Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hagedorn, F., Gavazov, K. & Alexander, J. M. Above- and belowground linkages shape responses of mountain vegetation to climate change. Science 365, 1119–1123 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Stevenson, A. et al. Is there a common water-activity limit for the three domains of life? ISME J. 9, 1333–1351 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Moyano, F. E., Manzoni, S. & Chenu, C. Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol. Biochem. 59, 72–85 (2013).

    Article  CAS  Google Scholar 

  27. Willig, M. R. Biodiversity and productivity. Science 333, 1709–1710 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Y. R. et al. Global diversity and ecological drivers of lichenised soil fungi. New Phytol. 231, 1210–1219 (2021).

    Article  PubMed  Google Scholar 

  29. Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239–250 (2019).

    Article  PubMed  Google Scholar 

  30. Harris, J. Soil microbial communities and restoration ecology: facilitators or followers? Science 325, 573–574 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Montane, F., Romanya, J., Rovira, P. & Casals, P. Aboveground litter quality changes may drive soil organic carbon increase after shrub encroachment into mountain grasslands. Plant Soil 337, 151–165 (2010).

    Article  CAS  Google Scholar 

  32. Keiluweit, M., Gee, K., Denney, A. & Fendorf, S. Anoxic microsites in upland soils dominantly controlled by clay content. Soil Biol. Biochem. 118, 42–50 (2018).

    Article  CAS  Google Scholar 

  33. Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He, D. et al. Diversity and co-occurrence network of soil fungi are more responsive than those of bacteria to shifts in precipitation seasonality in a subtropical forest. Soil Biol. Biochem. 115, 499–510 (2017).

    Article  CAS  Google Scholar 

  35. Liu, S. E. et al. Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nat. Ecol. Evol. 6, 900–909 (2022).

    Article  PubMed  Google Scholar 

  36. van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

    Article  Google Scholar 

  37. Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Maestre, F. T. et al. Grazing and ecosystem service delivery in global drylands. Science 378, 915–920 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA 116, 6891–6896 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, K., Delgado-Baquerizo, M., Zhu, Y. G. & Chu, H. Space is more important than season when shaping soil microbial communities at a large spatial scale. mSystems 5, e00783–00719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kettler, T. A., Doran, J. W. & Gilbert, T. L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).

    Article  CAS  Google Scholar 

  42. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  43. Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci. Data 9, 409 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  45. Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. Biol. Sci. 281, 20141988 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article  Google Scholar 

  53. Yang, G., Wagg, C., Veresoglou, S. D., Hempel, S. & Rillig, M. C. How soil biota drive ecosystem stability. Trends Plant Sci. 23, 1057–1067 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).

    Article  PubMed  Google Scholar 

  55. Horne, D. J. & Scotter, D. R. The available water holding capacity of soils under pasture. Agric. Water Manag. 177, 165–171 (2016).

    Article  Google Scholar 

  56. Sala, O. E., Parton, W. J., Joyce, L. A. & Lauenroth, W. K. Primary production of the central grassland region of the United States. Ecology 69, 40–45 (1988).

    Article  Google Scholar 

  57. Grizzetti, B., Lanzanova, D., Liquete, C., Reynaud, A. & Cardoso, A. C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 61, 194–203 (2016).

    Article  Google Scholar 

  58. Helalia, A. M. The relation between soil infiltration and effective porosity in different soils. Agric. Water Manag. 24, 39–47 (1993).

    Article  Google Scholar 

  59. Lipiec, J., Kuś, J., Słowińska-Jurkiewicz, A. & Nosalewicz, A. Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res. 89, 210–220 (2006).

    Article  Google Scholar 

  60. Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).

    Article  Google Scholar 

  62. Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).

    Article  PubMed  Google Scholar 

  63. Ekenler, M. & Tabatabai, M. A. β-Glucosaminidase activity as an index of nitrogen mineralization in soils. Commun. Soil. Sci. Plan. 35, 1081–1094 (2004).

    Article  CAS  Google Scholar 

  64. Bell, C. W. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 81, e50961 (2013).

    Google Scholar 

  65. Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bloem, J., Hopkins, D. W. & Benedetti, A. Microbiological Methods for Assessing Soil Quality (CABI, 2005).

  68. Fraser, F. C. et al. On the origin of carbon dioxide released from rewetted soils. Soil Biol. Biochem. 101, 1–5 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & Garcia-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yuan, J. et al. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. ISME J. 14, 2936–2950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Revelle, W. psych: Procedures for psychological, psychometric, and personality research. R package version 2.3.3 (2022).

  72. Filzmoser, P., Maronna, R. & Werner, M. Outlier identification in high dimensions. Comput. Stat. Data 52, 1694–1711 (2008).

    Article  Google Scholar 

  73. Fong, Y. et al. chngpt: Estimation and hypothesis testing for threshold regression. R package version 2022.4-6 (2021).

  74. Hastie, T. gam: Generalized additive models. R package version 1.20 (2020).

  75. Xun, W. B. et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 9, 35 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, J. et al. Water availability creates global thresholds in multidimensional soil biodiversity and functions. Figshare https://doi.org/10.6084/m9.figshare.20004335 (2023).

  77. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

Y.F. is supported by National Natural Science Foundation of China (42177297) and CAS Strategic Priority Research Program (XDA28010302). M.D.-B. acknowledges support from the Spanish Ministry of Science and Innovation for the I+D+i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.D.-B. is also supported by a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 Objetivo temático ‘01—Refuerzo de la investigación, el desarrollo tecnológico y la innovación’) associated with the research project P20_00879 (ANDABIOMA). F.T.M. is supported by Generalitat Valenciana grant CIDEGENT/2018/041 and the Horizon Europe programme of the European Union (SOILGUARD, grant agreement no. 101000371). M.B. acknowledges funding from Spanish Ministry of Science and Innovation through a Ramón y Cajal Fellowship (no. RYC2021-031797-I). C.C. is supported by the European Commission under the Marie Sklodowska-Curie grant agreement no. 702057 (DRYLIFE). The survey of dryland areas was supported by the European Research Council (BIODESERT project, grant agreement no. 647038).

Author information

Authors and Affiliations

Authors

Contributions

M.D.-B., M.B. and Y.F. developed the original ideas. F.T.M., M.D.-B. and B.K.S. provided the original data. M.D.-B., F.T.M., B.K.S., T.S.-S., L.G.-V. and J.W. contributed to laboratory analyses. J.Z., Y.F., M.B., M.D.-B. and C.C. conducted statistical analyses. J.Z., Y.F. and M.D.-B. wrote the first draft of the manuscript and all authors contributed substantially to revisions.

Corresponding authors

Correspondence to Youzhi Feng or Manuel Delgado-Baquerizo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Carly Stevens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Response patterns of the diversity of soil taxa to environmental variables.

Regression models represent the linear regressions before and after the average threshold if a statistical threshold exists, or linear regression if otherwise. The vertical lines and numbers in the plot denoted the detected thresholds. MAT mean annual temperature; PSEA and TSEA, seasonality of precipitation and temperature. Latitude uses its absolute values to denote the distance from the equator.

Extended Data Fig. 2 Differential slope at both sides of the environmental threshold.

Violin diagrams showing the bootstrapped (200 times) slope values of the regressions existing each side of environmental threshold. The data was standardized so that slope values are scaled to the same extent when displayed as above. Asterisks indicate a significant difference in regression slopes when conducting an unpaired two-sided Mann–Whitney U test between before and after the threshold where: * = P value < 0.05; ** = P value < 0.01; *** = P value < 0.001; **** = P value < 0.0001, ns = not significant.

Extended Data Fig. 3 The importance of environmental variables that are associated with nonlinear shifts in soil biodiversity.

Average variation degree (AVD) estimates the variation of the detected threshold values in each environmental among multiple soil organisms. A lower AVD suggests a more conservative environmental factor, and thus are assumed to be more important, in determining the nonlinear behaviour of soil biodiversity.

Extended Data Fig. 4 Importance of environmental factors in driving the distribution of soil biodiversity.

We used a random forest algorithm to estimate the importance of environmental factors and presented their importance value as an increase in mean squared error (IncMSE, %). The numbers in the boxes represent the variation explained by the model, and asterisk above bars denotes a significant influential factor at the significance level of P value < 0.05.

Extended Data Fig. 5 Nonlinear relationships between water availability and climatic seasonality.

The rest of the legend is the same as in Fig. 2 in the main text.

Extended Data Fig. 6 Response patterns of soil functions to environmental variables.

Regression models represent the linear regressions before and after the average threshold if a statistical threshold exists, or linear regression if otherwise. The vertical lines and numbers in the plot denoted the detected thresholds. Soil WHC, soil water-holding capacity; Soil AP, soil available phosphorus. Some variables, such as soil ammonium, nitrate and AP, chitin degradation, soil C, soil saprobes, mutualism, and pathogen control, are log-transformed to increase data normality.

Extended Data Fig. 7 Differences in the slope at both sides of the threshold identified.

Violin diagrams showing bootstrapped values of the slope of the two regressions at each side of every environmental threshold found in the study. Rest of legend is the same as in Extended Data Fig. 2.

Extended Data Fig. 8 Importance of environmental factors in driving the distribution of soil functions.

The legend is the same as Extended Data Fig. 4.

Supplementary information

Supplementary Information

Supplementary Figs 1–5 and Tables 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Feng, Y., Maestre, F.T. et al. Water availability creates global thresholds in multidimensional soil biodiversity and functions. Nat Ecol Evol 7, 1002–1011 (2023). https://doi.org/10.1038/s41559-023-02071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02071-3

  • Springer Nature Limited

This article is cited by

Navigation