Skip to main content
Log in

Organocatalytic aromatization-promoted umpolung reaction of imines

  • Article
  • Published:

From Nature Chemistry

View current issue Submit your manuscript

Abstract

The umpolung functionalization of imines bears vast synthetic potential, but polarity inversion is less efficient compared with the carbonyl counterparts. Strong nucleophiles are often required to react with the N-electrophiles without catalytic and stereochemical control. Here we show an effective strategy to realize umpolung of imines promoted by organocatalytic aromatization. The attachment of strongly electron-withdrawing groups to imines could enhance the umpolung reactivity by both electronegativity and aromatic character, enabling the direct amination of (hetero)arenes with good efficiencies and stereoselectivities. Additionally, the application of chiral Brønsted acid catalyst furnishes (hetero)aryl C–N atropisomers or enantioenriched aliphatic amines via dearomative amination from N-electrophilic aromatic precursors. Control experiments and density functional theory calculations suggest an ionic mechanism for the umpolung reaction of imines. This disconnection expands the options to forge C–N bonds stereoselectively on (hetero)arenes, which represents an important synthetic pursuit, especially in medicinal chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Motivation and design for umpolung of imines.
Fig. 2: The synthesis of atropisomeric N-heteroaryls via catalytic asymmetric umpolung reaction of iminoquinones with C-2 substituted indoles.
Fig. 3: Mechanistic investigations.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under numbers CCDC 2181457 (E-1a), 2092420 (1), 2181572 (27), 2252804 (45), 2261521 (49), 2153493 (73), 1937417 (84) and 2252823 (102). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. The data supporting the findings of this work are provided in the Supplementary Information including experimental procedures and characterization of new compounds.

References

  1. Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18, 239–258 (1979).

    Google Scholar 

  2. Smith, A. B. & Adams, C. M. Evolution of dithiane-based strategies for the construction of architecturally complex natural products. Acc. Chem. Res. 37, 365–377 (2004).

    CAS  PubMed  Google Scholar 

  3. Shen, B., Makley, D. M. & Johnston, J. N. Umpolung reactivity in amide and peptide synthesis. Nature 465, 1027–1032 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eymur, S., Göllü, M. & Tanyeli, C. Umpolung strategy: advances in catalytic C–C bond formations. Turk. J. Chem. 37, 586–609 (2013).

    CAS  Google Scholar 

  5. Zheng, X. et al. Umpolung of hemiaminals: titanocene-catalyzed dehydroxylative radical coupling reactions with activated alkenes. Angew. Chem. Int. Ed. 52, 3494–3498 (2013).

    ADS  CAS  Google Scholar 

  6. Scattolin, T., Deckers, K. & Schoenebeck, F. Efficient synthesis of trifluoromethyl amines through a formal umpolung strategy from the bench-stable precursor (Me4N)SCF3. Angew. Chem. Int. Ed. 56, 221–224 (2017).

    CAS  Google Scholar 

  7. Enders, D., Niemeier, O. & Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 107, 5606–5655 (2007).

    CAS  PubMed  Google Scholar 

  8. Bugaut, X. & Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev. 41, 3511–3522 (2012).

    CAS  PubMed  Google Scholar 

  9. Mahatthananchai, J. & Bode, J. W. On the mechanism of N-heterocyclic carbene-catalyzed reactions involving acyl azoliums. Acc. Chem. Res. 47, 696–707 (2014).

    CAS  PubMed  Google Scholar 

  10. Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 115, 9307–9387 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakano, Y. & Lupton, D. W. Enantioselective N-heterocyclic carbene catalysis by the umpolung of α,β-unsaturated ketones. Angew. Chem. Int. Ed. 55, 3135–3139 (2016).

    CAS  Google Scholar 

  12. Wang, M. H. & Scheidt, K. A. Cooperative catalysis and activation with N-heterocyclic carbenes. Angew. Chem. Int. Ed. 55, 14912–14922 (2016).

    CAS  Google Scholar 

  13. Guo, C., Fleige, M., Janssen-Müller, D., Daniliuc, C. G. & Glorius, F. Cooperative N-heterocyclic carbene/palladium-catalyzed enantioselective umpolung annulations. J. Am. Chem. Soc. 138, 7840–7843 (2016).

    CAS  PubMed  Google Scholar 

  14. Kobayashi, S. & Ishitani, H. Catalytic enantioselective addition to imines. Chem. Rev. 99, 1069–1094 (1999).

    CAS  PubMed  Google Scholar 

  15. Kobayashi, S., Mori, Y., Fossey, J. S. & Salter, M. M. Catalytic enantioselective formation of C–C bonds by addition to imines and hydrazones: a ten-year update. Chem. Rev. 111, 2626–2704 (2011).

    CAS  PubMed  Google Scholar 

  16. Hummel, J. R., Boerth, J. A. & Ellman, J. A. Transition-metal-catalyzed C–H bond addition to carbonyls, imines, and related polarized π bonds. Chem. Rev. 117, 9163–9227 (2017).

    CAS  PubMed  Google Scholar 

  17. Waser, M. & Novacek, J. An organocatalytic biomimetic strategy paves the way for the asymmetric umpolung of imines. Angew. Chem. Int. Ed. 54, 14228–14231 (2015).

    CAS  Google Scholar 

  18. Wu, Y., Hu, L., Li, Z. & Deng, L. Catalytic asymmetric umpolung reactions of imines. Nature 523, 445–450 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, J., Cao, C.-G., Sun, H.-B., Zhang, X. & Niu, D. Catalytic asymmetric umpolung allylation of imines. J. Am. Chem. Soc. 138, 13103–13106 (2016).

    CAS  PubMed  Google Scholar 

  20. Chen, P. et al. Phosphine-catalyzed asymmetric umpolung addition of trifluoromethyl ketimines to Morita–Baylis–Hillman carbonates. Angew. Chem. Int. Ed. 55, 13316–13320 (2016).

    CAS  Google Scholar 

  21. Hu, L., Wu, Y., Li, Z. & Deng, L. Catalytic asymmetric synthesis of chiral γ-amino ketones via umpolung reactions of imines. J. Am. Chem. Soc. 138, 15817–15820 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Patra, A. et al. N-Heterocyclic-carbene-catalyzed umpolung of imines. Angew. Chem. Int. Ed. 56, 2730–2734 (2017).

    ADS  CAS  Google Scholar 

  23. Hu, B. & Deng, L. Catalytic asymmetric synthesis of trifluoromethylated γ-amino acids through the umpolung addition of trifluoromethyl imines to carboxylic acid derivatives. Angew. Chem. Int. Ed. 57, 2233–2237 (2018).

    CAS  Google Scholar 

  24. Fiaud, J.-C. & Kagan, H. B. Une nouvelle synthese D’α amino-acides. Synthese asymetrique de l’alanine. Tetrahedron Lett. 11, 1813–1816 (1970).

    Google Scholar 

  25. Niwa, Y., Takayama, K. & Shimizu, M. Electrophilic amination with iminomalonate. Tetrahedron Lett. 42, 5473–5476 (2001).

    CAS  Google Scholar 

  26. Kattamuri, P. V. et al. Practical singly and doubly electrophilic aminating agents: a new, more sustainable platform for carbon–nitrogen bond formation. J. Am. Chem. Soc. 139, 11184–11196 (2017).

    CAS  PubMed  Google Scholar 

  27. Mizota, I. & Shimizu, M. Umpolung reactions of α-imino esters: useful methods for the preparation of α-amino acid frameworks. Chem. Rec. 16, 688–702 (2016).

    CAS  PubMed  Google Scholar 

  28. King, R. B. & Efraty, A. Pentamethylcyclopentadienyl derivatives of transition metals. II. Synthesis of pentamethylcyclopentadienyl metal carbonyls from 5-acetyl-1,2,3,4,5-pentamethylcyclopentadiene. J. Am. Chem. Soc. 94, 3773–3779 (1972).

    CAS  Google Scholar 

  29. Schleyer, Pv. R. & Pühlhofer, F. Recommendations for the evaluation of aromatic stabilization energies. Org. Lett. 4, 2873–2876 (2002).

    CAS  PubMed  Google Scholar 

  30. Babinski, D. J. et al. Synchronized aromaticity as an enthalpic driving force for the aromatic Cope rearrangement. J. Am. Chem. Soc. 134, 16139–16142 (2012).

    CAS  PubMed  Google Scholar 

  31. Xu, Y. et al. Deacylative transformations of ketones via aromatization-promoted C–C bond activation. Nature 567, 373–378 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cho, S.-H., Kim, J.-Y., Kwak, J. & Chang, S. Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem. Soc. Rev. 40, 5068–5083 (2011).

    CAS  PubMed  Google Scholar 

  33. Louillat, M.-L. & Patureau, F. W. Oxidative C–H amination reactions. Chem. Soc. Rev. 43, 901–910 (2014).

    CAS  PubMed  Google Scholar 

  34. Mailyan, A. K. et al. Cutting-edge and time-honored strategies for stereoselective construction of C–N bonds in total synthesis. Chem. Rev. 116, 4441–4557 (2016).

    CAS  PubMed  Google Scholar 

  35. Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paudyal, M. P. et al. Dirhodium-catalyzed C–H arene amination using hydroxylamines. Science 353, 1144–1147 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takahashi, I., Suzuki, Y. & Kitagawa, O. Asymmetric synthesis of atropisomeric compounds with an N–C chiral axis. Org. Prep. Proced. Int. 46, 1–23 (2014).

    CAS  Google Scholar 

  39. Ricci, A. Amino Group Chemistry: from Synthesis to the Life Sciences (Wiley–VCH, 2008).

  40. Tsuji, N. et al. Activation of olefins via asymmetric Brønsted acid catalysis. Science 359, 1501–1505 (2018).

    ADS  CAS  PubMed  Google Scholar 

  41. Schreyer, L. et al. Confined acids catalyze asymmetric single aldolizations of acetaldehyde enolates. Science 362, 216–219 (2018).

    ADS  CAS  PubMed  Google Scholar 

  42. Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    CAS  Google Scholar 

  43. Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    CAS  PubMed  Google Scholar 

  44. Zhuo, C.-X., Zhang, W. & You, S.-L. Catalytic asymmetric dearomatization reactions. Angew. Chem. Int. Ed. 51, 12662–12686 (2012).

    Google Scholar 

  45. Gustafson, J., Lim, D. & Miller, S. J. Dynamic kinetic resolution of biaryl atropisomers via peptide-catalyzed asymmetric bromination. Science 328, 1251–1255 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barrett, K. T., Metrano, A. J., Rablen, P. R. & Miller, S. J. Spontaneous transfer of chirality in an atropisomerically enriched two-axis system. Nature 509, 71–75 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iorio, N. D. et al. Remote control of axial chirality: aminocatalytic desymmetrization of N-arylmaleimides via vinylogous Michael addition. J. Am. Chem. Soc. 136, 10250–10253 (2014).

    PubMed  Google Scholar 

  48. Zhang, J.-W. et al. Discovery and enantiocontrol of axially chiral urazoles via organocatalytic tyrosine click reaction. Nat. Commun. 7, 10677 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  49. Crawford, J. M., Stone, E. A., Metrano, A. J., Miller, S. J. & Sigman, M. S. Parameterization and analysis of peptide-based catalysts for the atroposelective bromination of 3-arylquinazolin-4(3H)-ones. J. Am. Chem. Soc. 140, 868–871 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, T.-Z., Liu, S.-J., Tan, W. & Shi, F. Catalytic asymmetric construction of axially chiral indole-based frameworks: an emerging area. Chem. Eur. J. 26, 15779–15792 (2020).

    CAS  PubMed  Google Scholar 

  51. Frisch, M. J. et al. Gaussian 16, revision A.03 (Gaussian, 2016).

  52. Chai, J. D. et al. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    CAS  PubMed  Google Scholar 

  53. Cossi, M. et al. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24, 669–681 (2003).

    CAS  PubMed  Google Scholar 

  54. Luchini, G. et al. GoodVibes 3.0.1 10.5281/zenodo.595246 (2019).

  55. Grimme, S. Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem. Eur. J. 18, 9955–9964 (2012).

    CAS  PubMed  Google Scholar 

  56. Li, Y. et al. Improved force-field parameters for QM/MM simulations of the energies of adsorption for molecules in zeolites and a free rotor correction to the rigid rotor harmonic oscillator model for adsorption enthalpies. J. Phys. Chem. C 119, 1840–1850 (2015).

    ADS  CAS  Google Scholar 

  57. Grimme, S. et al. Fully automated quantum-chemistry-based computation of spin-spincoupled nuclear magnetic resonance spectra. Angew. Chem. Int. Ed. 56, 14763–14769 (2017).

    CAS  Google Scholar 

  58. Grimme, S. Exploration of chemical compound, conformer, and reaction space with metadynamics simulations based on tight-binding quantum chemical calculations. J. Chem. Theory Comput. 15, 2847–2862 (2019).

    CAS  PubMed  Google Scholar 

  59. Grimme, S. et al. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 13, 1989–2009 (2017).

    CAS  PubMed  Google Scholar 

  60. Bannwarth, C. et al. GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and densitydependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).

    CAS  PubMed  Google Scholar 

  61. Pracht, P. et al. A robust non-self-consistent tight binding quantum chemistry method for large molecules. Preprint at ChemRxiv 10.26434/chemrxiv.8326202.v1 (2019).

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (nos. 21825105 and 22231004 to B.T. and no. 22271135 to S.-H.X.), National Key R&D Program of China (nos. 2022YFA1503703 and 2021YFF0701604 to B.T.), National Science Foundation (CHE-1764328 to K.N.H.), Guangdong Innovative Program (no. 2019BT02Y335 to B.T.), Shenzhen Science and Technology Program (KQTD20210811090112004 and JCYJ20210324120205016 to B.T. and JCYJ20210324105005015 to S.-H.X.). Computational work was supported by the Center for Computational Science and Engineering at Southern University of Science and Technology, and the Extreme Science and Engineering Discovery Environment, which is supported by the National Science Foundation (OCI-1053575 to K.N.H.). The authors appreciate the assistance of SUSTech Core Research Facilities.

Author information

Authors and Affiliations

Authors

Contributions

B.T. conceived and directed the project. Y.-H.C. designed and performed experiments. S.-L.L, Y.-W.L., J.K.C. and S.-H.X. helped with the collection of some new compounds and data analysis. M.D. and P.Y. performed the DFT calculations and mechanism analysis. K.N.H. directed the DFT calculations and mechanism analysis. B.T., Y.-H.C., M.D., J.K.C., S.-H.X. and K.N.H. wrote the paper with input from all other authors. All authors discussed the results and commented on the manuscript. Y.-H.C. and M.D. contributed equally to this work

Corresponding authors

Correspondence to Kendall N. Houk or Bin Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–797, Tables 1–5, experimental procedures, synthetic procedures, characterization data and DFT calculations.

Supplementary Data 1

Crystallographic data for compound E-1a; CCDC reference 2181457.

Supplementary Data 2

Structure factors of compound E-1a; CCDC reference 2181457.

Supplementary Data 3

Crystallographic data for compound 1; CCDC reference 2092420.

Supplementary Data 4

Structure factors of compound 1; CCDC reference 2092420.

Supplementary Data 5

Crystallographic data for compound 27; CCDC reference 2181572.

Supplementary Data 6

Structure factors of compound 27; CCDC reference 2181572.

Supplementary Data 7

Crystallographic data for compound 45; CCDC reference 2252804.

Supplementary Data 8

Structure factors of compound 45; CCDC reference 2252804.

Supplementary Data 9

Crystallographic data for compound 49; CCDC reference 2261521.

Supplementary Data 10

Structure factors of compound 49; CCDC reference 2261521.

Supplementary Data 11

Crystallographic data for compound 73; CCDC reference 2153493.

Supplementary Data 12

Structure factors of compound 73; CCDC reference 2153493.

Supplementary Data 13

Crystallographic data for compound 84; CCDC reference 1937417.

Supplementary Data 14

Structure factors of compound 84; CCDC reference 1937417.

Supplementary Data 15

Crystallographic data for compound 102; CCDC reference 2252823.

Supplementary Data 16

Structure factors of compound 102; CCDC reference 2252823.

Supplementary Data 17

Calculations archive files in XYZ format.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YH., Duan, M., Lin, SL. et al. Organocatalytic aromatization-promoted umpolung reaction of imines. Nat. Chem. 16, 408–416 (2024). https://doi.org/10.1038/s41557-023-01384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01384-x

  • Springer Nature Limited

Navigation