Skip to main content
Log in

Cellular and molecular architecture of the intestinal stem cell niche

  • Review Article
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

Abstract

Intestinal stem and progenitor cells replicate and differentiate in distinct compartments, influenced by Wnt, BMP, and other subepithelial cues. The cellular sources of these signals were long obscure because intestinal mesenchyme was insufficiently characterised. In this Review, we discuss how recent mRNA profiles of mouse and human intestinal submucosa, coupled with fine-resolution microscopy and gene and cell disruptions, reveal a coherent picture of an organised tissue carrying cells with distinct molecular properties and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Small intestine mesenchymal architecture.
Fig. 2: Fine resolution of mesenchymal populations.
Fig. 3: Consensus distribution of expressed Wnt and BMP pathway signals in mesenchyme-resident cells.
Fig. 4: Mesenchymal cell functions inferred from organoid co-cultures.

Similar content being viewed by others

References

  1. Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell 154, 274–284 (2013).

    CAS  PubMed  Google Scholar 

  2. Medema, J. P. & Vermeulen, L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474, 318–326 (2011).

    CAS  PubMed  Google Scholar 

  3. Tauriello, D. V. F. & Batlle, E. Targeting the microenvironment in advanced colorectal cancer. Trends Cancer 2, 495–504 (2016).

    PubMed  Google Scholar 

  4. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    CAS  PubMed  Google Scholar 

  5. Kuhnert, F. et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc. Natl Acad. Sci. USA 101, 266–271 (2004).

    CAS  PubMed  Google Scholar 

  6. Pinto, D., Gregorieff, A., Begthel, H. & Clevers, H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 17, 1709–1713 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    PubMed  Google Scholar 

  8. Batts, L. E., Polk, D. B., Dubois, R. N. & Kulessa, H. Bmp signaling is required for intestinal growth and morphogenesis. Dev. Dyn. 235, 1563–1570 (2006).

    CAS  PubMed  Google Scholar 

  9. Haramis, A. P. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303, 1684–1686 (2004).

    CAS  PubMed  Google Scholar 

  10. He, X. C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat. Genet. 36, 1117–1121 (2004).

    CAS  PubMed  Google Scholar 

  11. Haffen, K., Kedinger, M. & Simon-Assmann, P. Mesenchyme-dependent differentiation of epithelial progenitor cells in the gut. J. Pediatr. Gastroenterol. Nutr. 6, 14–23 (1987).

    CAS  PubMed  Google Scholar 

  12. Kim, B. M., Buchner, G., Miletich, I., Sharpe, P. T. & Shivdasani, R. A. The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. Dev. Cell 8, 611–622 (2005).

    CAS  PubMed  Google Scholar 

  13. Zhang, X. et al. Reciprocal epithelial-mesenchymal FGF signaling is required for cecal development. Development 133, 173–180 (2006).

    CAS  PubMed  Google Scholar 

  14. Kedinger, M., Lefebvre, O., Duluc, I., Freund, J. N. & Simon-Assmann, P. Cellular and molecular partners involved in gut morphogenesis and differentiation. Philos. Trans. R. Soc. Lond. B 353, 847–856 (1998).

    CAS  Google Scholar 

  15. Biswas, S. et al. Microenvironmental control of stem cell fate in intestinal homeostasis and disease. J. Pathol. 237, 135–145 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Sailaja, B. S., He, X. C. & Li, L. The regulatory niche of intestinal stem cells. J. Physiol. (Lond.) 594, 4827–4836 (2016).

    CAS  Google Scholar 

  17. Kondo, A. & Kaestner, K. H. Emerging diverse roles of telocytes. Development 146, dev175018 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Powell, D. W., Adegboyega, P. A., Di Mari, J. F. & Mifflin, R. C. Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G2–G7 (2005).

    CAS  PubMed  Google Scholar 

  19. Powell, D. W., Pinchuk, I. V., Saada, J. I., Chen, X. & Mifflin, R. C. Mesenchymal cells of the intestinal lamina propria. Annu. Rev. Physiol. 73, 213–237 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Roulis, M. & Flavell, R. A. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation 92, 116–131 (2016).

    CAS  PubMed  Google Scholar 

  21. Greicius, G. et al. PDGFRα + pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc. Natl Acad. Sci. USA 115, E3173–E3181 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. McCarthy, N. et al. Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell 26, 391–402.e5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stzepourginski, I. et al. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc. Natl Acad. Sci. USA 114, E506–E513 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shoshkes-Carmel, M. et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 557, 242–246 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Degirmenci, B., Valenta, T., Dimitrieva, S., Hausmann, G. & Basler, K. GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. Nature 558, 449–453 (2018).

    CAS  PubMed  Google Scholar 

  26. Kim, J. E. et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat. Commun. 11, 334 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Roulis, M. et al. Intestinal myofibroblast-specific Tpl2-Cox-2-PGE2 pathway links innate sensing to epithelial homeostasis. Proc. Natl Acad. Sci. USA 111, E4658–E4667 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hao, M. M. et al. Enteric nervous system assembly: Functional integration within the developing gut. Dev. Biol. 417, 168–181 (2016).

    CAS  PubMed  Google Scholar 

  30. Rao, M. & Gershon, M. D. Enteric nervous system development: what could possibly go wrong? Nat. Rev. Neurosci. 19, 552–565 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hao, H. X. et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485, 195–200 (2012).

    CAS  PubMed  Google Scholar 

  32. Korinek, V. et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275, 1784–1787 (1997).

    CAS  PubMed  Google Scholar 

  33. de Lau, W., Peng, W. C., Gros, P. & Clevers, H. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev. 28, 305–316 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fevr, T., Robine, S., Louvard, D. & Huelsken, J. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol. 27, 7551–7559 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. van Es, J. H. et al. A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal. Mol. Cell. Biol. 32, 1918–1927 (2012).

    PubMed  PubMed Central  Google Scholar 

  37. Kabiri, Z. et al. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development 141, 2206–2215 (2014).

    CAS  PubMed  Google Scholar 

  38. Valenta, T. et al. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep. 15, 911–918 (2016).

    CAS  PubMed  Google Scholar 

  39. Kim, K. A. et al. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 309, 1256–1259 (2005).

    CAS  PubMed  Google Scholar 

  40. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  PubMed  Google Scholar 

  41. Yan, K. S. et al. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature 545, 238–242 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    CAS  PubMed  Google Scholar 

  43. Topol, L. et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J. Cell Biol. 162, 899–908 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nemeth, M. J., Topol, L., Anderson, S. M., Yang, Y. & Bodine, D. M. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc. Natl Acad. Sci. USA 104, 15436–15441 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyoshi, H., Ajima, R., Luo, C. T., Yamaguchi, T. P. & Stappenbeck, T. S. Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury. Science 338, 108–113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Davis, H. et al. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat. Med. 21, 62–70 (2015).

    CAS  PubMed  Google Scholar 

  47. Howe, J. R. et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat. Genet. 28, 184–187 (2001).

    CAS  PubMed  Google Scholar 

  48. Network, T.C.G.A.; Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Google Scholar 

  49. Gomez-Puerto, M. C., Iyengar, P. V., García de Vinuesa, A., Ten Dijke, P. & Sanchez-Duffhues, G. Bone morphogenetic protein receptor signal transduction in human disease. J. Pathol. 247, 9–20 (2019).

    CAS  PubMed  Google Scholar 

  50. Kosinski, C. et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc. Natl Acad. Sci. USA 104, 15418–15423 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, L. et al. A reinforcing HNF4-SMAD4 feed-forward module stabilizes enterocyte identity. Nat. Genet. 51, 777–785 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gregorieff, A. et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129, 626–638 (2005).

    CAS  PubMed  Google Scholar 

  53. Storm, E. E. et al. Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function. Nature 529, 97–100 (2016).

    CAS  PubMed  Google Scholar 

  54. Warner, M. L., Bell, T. & Pioszak, A. A. Engineering high-potency R-spondin adult stem cell growth factors. Mol. Pharmacol. 87, 410–420 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Qi, Z. et al. BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes. Nat. Commun. 8, 13824 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Walton, K. D. et al. Villification in the mouse: Bmp signals control intestinal villus patterning. Development 143, 427–436 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).

    CAS  PubMed  Google Scholar 

  58. Durand, A. et al. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc. Natl Acad. Sci. USA 109, 8965–8970 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, T. H., Escudero, S. & Shivdasani, R. A. Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc. Natl Acad. Sci. USA 109, 3932–3937 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Farin, H. F., Van, Es,J. H. & Clevers, H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 143, 1518–1529.e7 (2012).

    CAS  PubMed  Google Scholar 

  61. San Roman, A. K., Jayewickreme, C. D., Murtaugh, L. C. & Shivdasani, R. A. Wnt secretion from epithelial cells and subepithelial myofibroblasts is not required in the mouse intestinal stem cell niche in vivo. Stem Cell Rep. 2, 127–134 (2014).

    CAS  Google Scholar 

  62. Farin, H. F. et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 530, 340–343 (2016).

    CAS  PubMed  Google Scholar 

  63. Lahar, N. et al. Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium. PLoS One 6, e26898 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lei, N. Y. et al. Intestinal subepithelial myofibroblasts support the growth of intestinal epithelial stem cells. PLoS One 9, e84651 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Merenda, A., Fenderico, N. & Maurice, M. M. Wnt signaling in 3D: Recent advances in the applications of intestinal organoids. Trends Cell Biol. 30, 60–73 (2020).

    CAS  PubMed  Google Scholar 

  66. Mustata, R. C. et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 5, 421–432 (2013).

    CAS  PubMed  Google Scholar 

  67. Fordham, R. P. et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 13, 734–744 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stelzner, M. et al. A nomenclature for intestinal in vitro cultures. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1359–G1363 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Serra, D. et al. Self-organization and symmetry breaking in intestinal organoid development. Nature 569, 66–72 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ohkawara, B., Glinka, A. & Niehrs, C. Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis. Dev. Cell 20, 303–314 (2011).

    CAS  PubMed  Google Scholar 

  71. Bernier-Latmani, J. & Petrova, T. V. High-resolution 3D analysis of mouse small-intestinal stroma. Nat. Protoc. 11, 1617–1629 (2016).

    CAS  PubMed  Google Scholar 

  72. Bernier-Latmani, J. et al. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. J. Clin. Invest. 125, 4572–4586 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Cretoiu, D., Cretoiu, S. M., Simionescu, A. A. & Popescu, L. M. Telocytes, a distinct type of cell among the stromal cells present in the lamina propria of jejunum. Histol. Histopathol. 27, 1067–1078 (2012).

    CAS  PubMed  Google Scholar 

  74. Vannucchi, M. G., Traini, C., Manetti, M., Ibba-Manneschi, L. & Faussone-Pellegrini, M. S. Telocytes express PDGFRα in the human gastrointestinal tract. J. Cell. Mol. Med. 17, 1099–1108 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kurahashi, M., Nakano, Y., Hennig, G. W., Ward, S. M. & Sanders, K. M. Platelet-derived growth factor receptor α-positive cells in the tunica muscularis of human colon. J. Cell. Mol. Med. 16, 1397–1404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kurahashi, M. et al. A novel population of subepithelial platelet-derived growth factor receptor α-positive cells in the mouse and human colon. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G823–G834 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Popescu, L. M. & Faussone-Pellegrini, M. S. TELOCYTES - a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J. Cell. Mol. Med. 14, 729–740 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Furuya, S. & Furuya, K. Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. Int. Rev. Cytol. 264, 165–223 (2007).

    CAS  PubMed  Google Scholar 

  79. Joyce, N. C., Haire, M. F. & Palade, G. E. Morphologic and biochemical evidence for a contractile cell network within the rat intestinal mucosa. Gastroenterology 92, 68–81 (1987).

    CAS  PubMed  Google Scholar 

  80. Cretoiu, S. M. & Popescu, L. M. Telocytes revisited. Biomol. Concepts 5, 353–369 (2014).

    CAS  PubMed  Google Scholar 

  81. Toyoda, H., Ina, K., Kitamura, H., Tsuda, T. & Shimada, T. Organization of the lamina propria mucosae of rat intestinal mucosa, with special reference to the subepithelial connective tissue. Acta Anat. 158, 172–184 (1997).

    CAS  PubMed  Google Scholar 

  82. Aoki, R. et al. Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche. Cell. Mol. Gastroenterol. Hepatol. 2, 175–188 (2016).

    PubMed  Google Scholar 

  83. Thomson, C. A. et al. Expression of the atypical chemokine receptor ACKR4 identifies a novel population of intestinal submucosal fibroblasts that preferentially expresses endothelial cell regulators. J. Immunol. 201, 215–229 (2018).

    CAS  PubMed  Google Scholar 

  84. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Roulis, M. et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 580, 524–529 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e722 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Eyden, B., Curry, A. & Wang, G. Stromal cells in the human gut show ultrastructural features of fibroblasts and smooth muscle cells but not myofibroblasts. J. Cell. Mol. Med. 15, 1483–1491 (2011).

    PubMed  Google Scholar 

  88. Ogasawara, R. et al. Intestinal lymphatic endothelial cells produce R-spondin3. Sci. Rep. 8, 10719 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Bahar Halpern, K. et al. Lgr5+ telocytes are a signaling source at the intestinal villus tip. Nat. Commun. 11, 1936 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, M. Y. et al. Smooth muscle cell genome browser: enabling the identification of novel Serum Response Factor target genes. PLoS One 10, e0133751 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Brazil, D. P., Church, R. H., Surae, S., Godson, C. & Martin, F. BMP signalling: agony and antagony in the family. Trends Cell Biol. 25, 249–264 (2015).

    CAS  PubMed  Google Scholar 

  92. Wiese, K. E., Nusse, R. & van Amerongen, R. Wnt signalling: conquering complexity. Development 145, 165902 (2018).

    Google Scholar 

  93. Proffitt, K. D. et al. Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer Res. 73, 502–507 (2013).

    CAS  PubMed  Google Scholar 

  94. Herr, P. & Basler, K. Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev. Biol. 361, 392–402 (2012).

    CAS  PubMed  Google Scholar 

  95. Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C. & Garcia, K. C. Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Takada, R. et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11, 791–801 (2006).

    CAS  PubMed  Google Scholar 

  97. Chee, Y. C. et al. Intrinsic xenobiotic resistance of the intestinal stem cell niche. Dev. Cell 46, 681–695.e5 (2018).

    CAS  PubMed  Google Scholar 

  98. Sato, T. & Clevers, H. Primary mouse small intestinal epithelial cell cultures. Methods Mol. Biol. 945, 319–328 (2013).

    PubMed  Google Scholar 

  99. Kaestner, K. H. The intestinal stem cell niche: A central role for Foxl1-expressing subepithelial telocytes. Cell. Mol. Gastroenterol. Hepatol. 8, 111–117 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. Kaestner, K. H., Silberg, D. G., Traber, P. G. & Schütz, G. The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes Dev. 11, 1583–1595 (1997).

    CAS  PubMed  Google Scholar 

  101. Perreault, N., Katz, J. P., Sackett, S. D. & Kaestner, K. H. Foxl1 controls the Wnt/beta-catenin pathway by modulating the expression of proteoglycans in the gut. J. Biol. Chem. 276, 43328–43333 (2001).

    CAS  PubMed  Google Scholar 

  102. Harnack, C. et al. R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon. Nat. Commun. 10, 4368 (2019).

    PubMed  PubMed Central  Google Scholar 

  103. Samuelson, L. C. Debate over the identity of an intestinal niche-cell population settled. Nature 558, 380–381 (2018).

    CAS  PubMed  Google Scholar 

  104. Aono, A. et al. Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimer. Biochem. Biophys. Res. Commun. 210, 670–677 (1995).

    CAS  PubMed  Google Scholar 

  105. Kim, H. S., Neugebauer, J., McKnite, A., Tilak, A. & Christian, J. L. BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian embryogenesis. eLife 8, e48872 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lotti, F. et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J. Exp. Med. 210, 2851–2872 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Madan, B. et al. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene 35, 2197–2207 (2016).

    CAS  PubMed  Google Scholar 

  108. Scholer-Dahirel, A. et al. Maintenance of adenomatous polyposis coli (APC)-mutant colorectal cancer is dependent on Wnt/beta-catenin signaling. Proc. Natl Acad. Sci. USA 108, 17135–17140 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lenos, K. J. et al. Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. Nat. Cell Biol. 20, 1193–1202 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468–476 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work on this topic in the authors’ laboratory is supported by NIH awards R01DK121540, U01DK103152, and F32DK118862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh A. Shivdasani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarthy, N., Kraiczy, J. & Shivdasani, R.A. Cellular and molecular architecture of the intestinal stem cell niche. Nat Cell Biol 22, 1033–1041 (2020). https://doi.org/10.1038/s41556-020-0567-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-020-0567-z

  • Springer Nature Limited

This article is cited by

Navigation