Skip to main content
Log in

Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria

  • Article
  • Published:

From Nature Plants

View current issue Submit your manuscript

Abstract

Two large protein-cofactor complexes, photosystem I and photosystem II, are the central components of photosynthesis in the thylakoid membranes. Here, we report the 2.37-Å structure of a tetrameric photosystem I complex from a heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Four photosystem I monomers, organized in a dimer of dimer, form two distinct interfaces that are largely mediated by specifically orientated polar lipids, such as sulfoquinovosyl diacylglycerol. The structure depicts a more closely connected network of chlorophylls across monomer interfaces than those seen in trimeric PSI from thermophilic cyanobacteria, possibly allowing a more efficient energy transfer between monomers. Our physiological data also revealed a functional link of photosystem I oligomerization to cyclic electron flow and thylakoid membrane organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Cryo-EM structure of the tetrameric PSI complex.
Fig. 2: Intermonomer interactions mediated by PSI subunits.
Fig. 3: Lipid–protein interactions in the tetramer.
Fig. 4: Time-course of the nonbonded interactions during the in silico assembly of PSI tetramer from monomers.
Fig. 5: Phenotype characterization of the WT and mutant strains of Anabaena 7120 under different light and nitrogen conditions.
Fig. 6: Thin-section EM images of the vegetative cells and heterocysts of Anabaena 7120.

Similar content being viewed by others

Data availability

Atomic coordinates have been deposited in the Protein Data Bank under the accession code 6K61. The cryo-EM density map has been uploaded to the Electron Microscopy Data Bank under the accession code EMD-9918. All other data can be obtained from the corresponding authors upon reasonable request.

References

  1. Nelson, N. & Yocum, C. F. Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 57, 521–565 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Wei, X. et al. Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534, 69–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. van Bezouwen, L. S. et al. Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat. Plants 3, 17080 (2017).

    Article  PubMed  CAS  Google Scholar 

  4. Umena, Y., Kawakami, K., Shen, J. R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Suga, M. et al. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517, 99–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi, Y., Koike, H. & Katoh, S. Multiple forms of chlorophyll–protein complexes from a thermophilic cyanobacterium Synechococcus sp. Arch. Biochem Biophys. 219, 209–218 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Su, X. et al. Structure and assembly mechanism of plant C2S2M2-type PSII–LHCII supercomplex. Science 357, 815–820 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Mazor, Y., Borovikova, A., Caspy, I. & Nelson, N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat. Plants 3, 17014 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Qin, X., Suga, M., Kuang, T. & Shen, J. R. Photosynthesis. Structural basis for energy transfer pathways in the plant PSI–LHCI supercomplex. Science 348, 989–995 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Mazor, Y., Nataf, D., Toporik, H. & Nelson, N. Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. eLife 3, e01496 (2013).

    Article  PubMed  Google Scholar 

  12. Pan, X. et al. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 360, 1109–1113 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Malavath, T., Caspy, I., Netzer-El, S. Y., Klaiman, D. & Nelson, N. Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim. Biophys. Acta Bioenerg. 1859, 645–654 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Rögner, M., Mühlenhoff, U., Boekema, E. J. & Witt, H. T. Mono-, di- and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. Biochim. Biophys. Acta Bioenerg. 1015, 415–424 (1990).

    Article  Google Scholar 

  15. Chitnis, V. P. & Chitnis, P. R. PsaL subunit is required for the formation of photosystem-I trimers in the cyanobacterium Synechocystis sp. PCC 6803. Febs Lett. 336, 330–334 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Xu, Q. et al. Mutational analysis of photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803. targeted inactivation of psaI reveals the function of psaI in the structural organization of psaL. J. Biol. Chem. 270, 16243–16250 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Ben-Shem, A., Frolow, F. & Nelson, N. Light-harvesting features revealed by the structure of plant photosystem I. Photosynth Res 81, 239–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Nelson, N. & Ben-Shem, A. The structure of photosystem I and evolution of photosynthesis. Bioessays 27, 914–922 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Amunts, A. & Nelson, N. Functional organization of a plant photosystem I: evolution of a highly efficient photochemical machine. Plant Physiol. Biochem. 46, 228–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Semchonok, D. A., Li, M., Bruce, B. D., Oostergetel, G. T. & Boekema, E. J. Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. Biochim. Biophys. Acta 1857, 1619–1626 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Li, M., Semchonok, D. A., Boekema, E. J. & Bruce, B. D. Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp. TS-821. Plant Cell 26, 1230–1245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Watanabe, M., Kubota, H., Wada, H., Narikawa, R. & Ikeuchi, M. Novel supercomplex organization of photosystem I in anabaena and cyanophora paradoxa. Plant Cell Physiol. 52, 162–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Flores, E., Picossi, S., Valladares, A. & Herrero, A. Transcriptional regulation of development in heterocyst-forming cyanobacteria. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 673–684 (2019).

  24. Wolk, C. P., Ernst, A. & Elhai, J. in The Molecular Biology of Cyanobacteria (ed. Bryant, D. A.) 769–823 (Springer Netherlands, 1994).

  25. Kastner, B. et al. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5, 53–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Fromme, P., Jordan, P. & Krauss, N. Structure of photosystem I. Biochim. Biophys. Acta 1507, 5–31 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Grotjohann, I. & Fromme, P. Structure of cyanobacterial photosystem I. Photosynth. Res. 85, 51–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Mizusawa, N., Sakata, S., Sakurai, I., Sato, N. & Wada, H. Involvement of digalactosyldiacylglycerol in cellular thermotolerance in Synechocystis sp. PCC 6803. Arch. Microbiol. 191, 595–601 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Mizusawa, N., Sakurai, I., Sato, N. & Wada, H. Lack of digalactosyldiacylglycerol increases the sensitivity of Synechocystis sp. PCC 6803 to high light stress. FEBS Lett. 583, 718–722 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Sato, N. Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution. J. Plant Res. 117, 495–505 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Domonkos, I. et al. Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol. 134, 1471–1478 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schluchter, W. M., Shen, G., Zhao, J. & Bryant, D. A. Characterization of psaI and psaL mutants of Synechococcus sp. strain PCC 7002: a new model for state transitions in cyanobacteria. Photochem. Photobio. 64, 53–66 (1996).

    Article  CAS  Google Scholar 

  33. Aspinwall, C. L., Sarcina, M. & Mullineaux, C. W. Phycobilisome mobility in the cyanobacterium Synechococcus sp. PCC7942 is influenced by the trimerisation of photosystem I. Photosynth Res 79, 179 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Chang, L. et al. Structural organization of an intact phycobilisome and its association with photosystem II. Cell Res. 25, 726–737 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Watanabe, M. et al. Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria. Proc. Natl Acad. Sci. USA 111, 2512–2517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Myers, J. Is there significant cyclic electron flow around photoreaction 1 in cyanobacteria? Photosynth. Res. 14, 55–69 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Gao, F. et al. The NDH-1L–PSI supercomplex is important for efficient cyclic electron transport in cyanobacteria. Plant Physiol. 172, 1451–1464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peltier, G., Aro, E. M. & Shikanai, T. NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis. Annu. Rev. Plant Biol. 67, 55–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Peng, L. & Shikanai, T. Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Physiol. 155, 1629–1639 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kato, Y., Sugimoto, K. & Shikanai, T. NDH-PSI supercomplex assembly precedes full assembly of the NDH complex in chloroplast. Plant Physiol. 176, 1728–1738 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, M., Lv, J., Fu, P. & Mi, H. Oscillation kinetics of post-illumination increase in Chl fluorescence in cyanobacterium Synechocystis PCC 6803. Front. Plant Sci. 7, 108 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Kondo, K., Mullineaux, C. W. & Ikeuchi, M. Distinct roles of CpcG1-phycobilisome and CpcG2-phycobilisome in state transitions in a cyanobacterium Synechocystis sp. PCC 6803. Photosynth. Res. 99, 217–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Deng, G., Liu, F., Liu, X. & Zhao, J. Significant energy transfer from CpcG2-phycobilisomes to photosystem I in the cyanobacterium Synechococcus sp. PCC 7002 in the absence of ApcD-dependent state transitions. FEBS Lett. 586, 2342–2345 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Bauer, C. C., Buikema, W. J., Black, K. & Haselkorn, R. A short-filament mutant of Anabaena sp. strain PCC-7120 that fragments in nitrogen-deficient medium. J. Bacteriol. 177, 1520–1526 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi, L. et al. Two genes encoding protein kinases of the HstK family are involved in synthesis of the minor heterocyst-specific glycolipid in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 189, 5075–5081 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng, Z. G. et al. An amidase is required for proper intercellular communication in the filamentous cyanobacterium Anabaena sp. PCC 7120. Proc. Natl Acad. Sci. USA 114, E1405–E1412 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ohki, K. & Fujita, Y. Photoregulation of phycobilisome structure during complementary chromatic adaptation in the marine cyanophyte Phormidium sp. C86. J. Phycol. 28, 803–808 (1992).

    Article  CAS  Google Scholar 

  48. Klodawska, K. et al. Elevated growth temperature can enhance photosystem I trimer formation and affects xanthophyll biosynthesis in cyanobacterium Synechocystis sp. PCC 6803 cells. Plant Cell Physiol. 56, 558–571 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Schuller, J. M. et al. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 363, 257–260 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).

    Google Scholar 

  51. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Elhai, J. & Wolk, C. P. Conjugal transfer of DNA to cyanobacteria. Methods Enzymol. 167, 747–754 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Zhao, W., Ye, Z. & Zhao, J. RbrA, a cyanobacterial rubrerythrin, functions as a FNR-dependent peroxidase in heterocysts in protection of nitrogenase from damage by hydrogen peroxide in Anabaena sp. PCC 7120. Mol. Microbiol. 66, 1219–1230 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Black, K., Buikema, W. J. & Haselkorn, R. The hglK gene is required for localization of heterocyst-specific glycolipids in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 177, 6440–6448 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao, J., Shen, G. & Bryant, D. A. Photosystem stoichiometry and state transitions in a mutant of the cyanobacterium Synechococcus sp. PCC 7002 lacking phycocyanin. Biochim. Biophys. Acta 1505, 248–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, X. et al. Effects of PSII manganese-stabilizing protein succinylation on photosynthesis in the model cyanobacterium Synechococcus sp. PCC 7002. Plant Cell Physiol. 59, 1466–1482 (2018).

    CAS  PubMed  Google Scholar 

  57. Shikanai, T. et al. Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc. Natl Acad. Sci. USA 95, 9705–9709 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  59. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5, e18722 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Pettersen, E. F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Adams, P. D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Cao, L.-R. et al. Recent developments in using molecular dynamics simulation techniques to study biomolecules. Acta Physico-Chimica Sinica 33, 1354–1365 (2017).

    CAS  Google Scholar 

  69. Peng, X., Zhang, Y., Chu, H. & Li, G. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform. J. Comput. Chem. 37, 614–622 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Peng, X. et al. Accurate evaluation of ion conductivity of the gramicidin a channel using a polarizable force field without any corrections. J. Chem. Theory Comput. 12, 2973–2982 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Peng, X. et al. Integrating multiple accelerated molecular dynamics to improve accuracy of free energy calculations. J. Chem. Theory Comput. 14, 1216–1227 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Monticelli, L. et al. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. de Jong, D. H. et al. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 9, 687–697 (2013).

    Article  PubMed  CAS  Google Scholar 

  77. van Eerden, F. J., de Jong, D. H., de Vries, A. H., Wassenaar, T. A. & Marrink, S. J. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim. Biophys. Acta 1848, 1319–1330 (2015).

    Article  PubMed  CAS  Google Scholar 

  78. de Jong, D. H. et al. Atomistic and coarse grain topologies for the cofactors associated with the photosystem II core complex. J. Phys. Chem. B 119, 7791–7803 (2015).

    Article  PubMed  CAS  Google Scholar 

  79. van der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  CAS  Google Scholar 

  80. Tironi, I. G., Sperb, R., Smith, P. E. & Vangunsteren, W. F. A generalized reaction field method for molecular-dynamics simulations. J. Chem. Phys. 102, 5451–5459 (1995).

    Article  CAS  Google Scholar 

  81. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  PubMed  CAS  Google Scholar 

  82. Parrinello, M. & Rahman, A. Polymorphic transitions in single-crystals: a new molecular-dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  CAS  Google Scholar 

  83. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Electron Microscopy Laboratory of Peking University and the cryo-EM platform of Peking University for cryo-EM data collection. We also thank the Core Facilities at School of Life Sciences Peking University for assistance with thin-section EM sample preparation and image analysis. The computation was supported by High-Performance Computing Platform of Peking University. The work was funded by the Ministry of Science and Technology of China (grant nos. 2016YFA0500700 to N.G. and 2015CB150101 and 2017YFA503703 to J.Z.), the National Natural Science Foundation of China (grant nos. 31725007 and 31630087 to N.G., 91851118 to J.Z., and 21625302 and 21573217 to G.L.).

Author information

Authors and Affiliations

Authors

Contributions

N.G. and J.Z. conceived the project. Y.L. purified photosystem I samples. L.Z. and Y.L. collected cryo-EM data. L.Z., C.M. and N.L. processed the cryo-EM data. L.Z., Y.L., X.L. and K.Z. conducted biochemical analysis. G.L. designed the MD strategy. G.L., Q.Z., Y.Z. and H.C. performed simulations. G.L. and Q.Z. analysed the simulation data. L.Z., Y.L., G.L., N.G. and J.Z. wrote the manuscript. All authors discussed and commented on the results and the manuscript.

Corresponding authors

Correspondence to Guohui Li, Jindong Zhao or Ning Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Mei Li, Christopher Gisriel and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Li, Y., Li, X. et al. Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria. Nat. Plants 5, 1087–1097 (2019). https://doi.org/10.1038/s41477-019-0525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0525-6

  • Springer Nature Limited

This article is cited by

Navigation