Skip to main content
Log in

Mitochondrial fission inhibition protects against hypertension induced by angiotensin II

  • Article
  • Published:
Hypertension Research Submit manuscript

A Comment to this article was published on 10 April 2024

Abstract

Mitochondrial dysfunction has been implicated in various types of cardiovascular disease including hypertension. Mitochondrial fission fusion balance is critical to mitochondrial quality control, whereas enhanced fission has been reported in several models of cardiovascular disease. However, limited information is available regarding the contribution of mitochondrial fission in hypertension. Here, we have tested the hypothesis that inhibition of mitochondrial fission attenuates the development of hypertension and associated vascular remodeling. In C57BL6 mice infused with angiotensin II for 2 weeks, co-treatment of mitochondrial fission inhibitor, mdivi1, significantly inhibited angiotensin II-induced development of hypertension assessed by radiotelemetry. Histological assessment of hearts and aortas showed that mdivi1 inhibited vessel fibrosis and hypertrophy induced by angiotensin II. This was associated with attenuation of angiotensin II-induced decline in mitochondrial aspect ratio seen in both the endothelial and medial layers of aortas. Mdivi1 also mitigated angiotensin II-induced cardiac hypertrophy assessed by heart weight-to-body weight ratio as well as by echocardiography. In ex vivo experiments, mdivi1 inhibited vasoconstriction and abolished the enhanced vascular reactivity by angiotensin II in small mesenteric arteries. Proteomic analysis on endothelial cell culture media with angiotensin II and/or mdivi1 treatment revealed that mdivi1 inhibited endothelial cell hypersecretory phenotype induced by angiotensin II. In addition, mdivi1 attenuated angiotensin II-induced protein induction of periostin, a myofibroblast marker in cultured vascular fibroblasts. In conclusion, these data suggest that mdivi1 prevented angiotensin II-induced hypertension and cardiovascular remodeling via multicellular mechanisms in the vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion. 2016;30:105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mishra P, Chan DC. Metabolic regulation of mitochondrial dynamics. J Cell Biol. 2016;212:379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kraus F, Roy K, Pucadyil TJ, Ryan MT. Function and regulation of the divisome for mitochondrial fission. Nature. 2021;590:57–66.

    Article  CAS  PubMed  Google Scholar 

  4. Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, et al. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol. 2016;594:509–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kirkman DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG. Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2021;320:H2080–H2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cicalese SM, da Silva JF, Priviero F, Webb RC, Eguchi S, Tostes RC. Vascular stress signaling in hypertension. Circ Res. 2021;128:969–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98:1627–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-Krott MM, et al. Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension. Arterioscler Thromb Vasc Biol. 2018;38:1969–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Humphrey JD. Mechanisms of vascular remodeling in hypertension. Am J Hypertens. 2021;34:432–41.

    Article  PubMed  Google Scholar 

  10. Jia G, Aroor AR, Hill MA, Sowers JR. Role of renin-angiotensin-aldosterone system activation in promoting cardiovascular fibrosis and stiffness. Hypertension. 2018;72:537–48.

    Article  CAS  PubMed  Google Scholar 

  11. Takayanagi T, Forrester SJ, Kawai T, Obama T, Tsuji T, Elliott KJ, et al. Vascular ADAM17 as a novel therapeutic target in mediating cardiovascular hypertrophy and perivascular fibrosis induced by angiotensin II. Hypertension. 2016;68:949–55.

    Article  CAS  PubMed  Google Scholar 

  12. Takayanagi T, Kawai T, Forrester SJ, Obama T, Tsuji T, Fukuda Y, et al. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II. Hypertension. 2015;65:1349–55.

    Article  CAS  PubMed  Google Scholar 

  13. Lim S, Lee SY, Seo HH, Ham O, Lee C, Park JH, et al. Regulation of mitochondrial morphology by positive feedback interaction between PKCdelta and Drp1 in vascular smooth muscle cell. J Cell Biochem. 2015;116:648–60.

    Article  CAS  PubMed  Google Scholar 

  14. Cooper HA, Cicalese S, Preston KJ, Kawai T, Okuno K, Choi ET, et al. Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm. Cardiovasc Res. 2021;117:971–82.

    Article  CAS  PubMed  Google Scholar 

  15. Takayanagi T, Crawford KJ, Kobayashi T, Obama T, Tsuji T, Elliott KJ, et al. Caveolin 1 is critical for abdominal aortic aneurysm formation induced by angiotensin II and inhibition of lysyl oxidase. Clin Sci (Lond). 2014;126:785–94.

    Article  CAS  PubMed  Google Scholar 

  16. Osei-Owusu P, Sabharwal R, Kaltenbronn KM, Rhee MH, Chapleau MW, Dietrich HH, et al. Regulator of G protein signaling 2 deficiency causes endothelial dysfunction and impaired endothelium-derived hyperpolarizing factor-mediated relaxation by dysregulating Gi/o signaling. J Biol Chem. 2012;287:12541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Osei-Owusu P, Knutsen RH, Kozel BA, Dietrich HH, Blumer KJ, Mecham RP. Altered reactivity of resistance vasculature contributes to hypertension in elastin insufficiency. Am J Physiol Heart Circ Physiol. 2014;306:H654–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Torimoto K, Okuno K, Kuroda R, Shanas N, Cicalese SM, Eguchi K, et al. Glucose consumption of vascular cell types in culture: toward optimization of experimental conditions. Am J Physiol Cell Physiol. 2022;322:C73–C85.

    Article  CAS  PubMed  Google Scholar 

  19. Asano T, Nakamura H, Kawamoto Y, Tada M, Kimura Y, Takano H, et al. Inhibition of Crmp1 phosphorylation at Ser522 ameliorates motor function and neuronal pathology in amyotrophic lateral sclerosis model mice. eNeuro. 2022;9:ENEURO.0133–22.2022.

    Article  CAS  PubMed  Google Scholar 

  20. Elliott KJ, Eguchi S. In vitro analysis of hypertensive signal transduction: kinase activation, kinase manipulation, and physiologic outputs. Methods Mol Biol (Clifton, NJ). 2017;1527:201–11.

    Article  CAS  Google Scholar 

  21. Forrester SJ, Preston KJ, Cooper HA, Boyer MJ, Escoto KM, Poltronetti AJ, et al. Mitochondrial fission mediates endothelial inflammation. Hypertension. 2020;76:267–76.

    Article  CAS  PubMed  Google Scholar 

  22. Miyao M, Cicalese S, Kawai T, Cooper HA, Boyer MJ, Elliott KJ, et al. Involvement of senescence and mitochondrial fission in endothelial cell pro-inflammatory phenotype induced by angiotensin II. Int J Mol Sci. 2020;21:3112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dagamajalu S, Rex DAB, Palollathil A, Shetty R, Bhat G, Cheung LWT, et al. A pathway map of AXL receptor-mediated signaling network. J Cell Commun Signal. 2021;15:143–8.

    Article  CAS  PubMed  Google Scholar 

  24. Deng Y, Li S, Chen Z, Wang W, Geng B, Cai J. Mdivi-1, a mitochondrial fission inhibitor, reduces angiotensin-II- induced hypertension by mediating VSMC phenotypic switch. Biomed Pharmacother. 2021;140:111689.

    Article  CAS  PubMed  Google Scholar 

  25. Liu MY, Jin J, Li SL, Yan J, Zhen CL, Gao JL, et al. Mitochondrial fission of smooth muscle cells is involved in artery constriction. Hypertension. 2016;68:1245–54.

    Article  CAS  PubMed  Google Scholar 

  26. Jeon KI, Kumar A, Wozniak KT, Nehrke K, Huxlin KR. Defining the role of mitochondrial fission in corneal myofibroblast differentiation. Invest Ophthalmol Vis Sci. 2022;63:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cha Y, Kim T, Jeon J, Jang Y, Kim PB, Lopes C, et al. SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes. Cell Rep. 2021;37:110155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lombardi AA, Gibb AA, Arif E, Kolmetzky DW, Tomar D, Luongo TS, et al. Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nat Commun. 2019;10:4509.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD, Correll RN, et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun. 2016;7:12260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Lu M, Xiong L, Fan J, Zhou Y, Li H, et al. Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis. Cell Death Dis. 2020;11:29.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lautrette A, Li S, Alili R, Sunnarborg SW, Burtin M, Lee DC, et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med. 2005;11:867–74.

    Article  CAS  PubMed  Google Scholar 

  32. Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res. 2015;116:264–78.

    Article  CAS  PubMed  Google Scholar 

  33. Okuno K, Torimoto K, Cicalese SM, Preston K, Rizzo V, Hashimoto T, et al. Angiotensin II type 1A receptor expressed in smooth muscle cells is required for hypertensive vascular remodeling in mice infused with angiotensin II. Hypertension. 2023;80:668–77.

    Article  CAS  PubMed  Google Scholar 

  34. Eguchi S, Sparks MA, Sawada H, Lu HS, Daugherty A, Zhuo JL. Recent advances in understanding the molecular pathophysiology of angiotensin II receptors: lessons from cell-selective receptor deletion in mice. Can J Cardiol. 2023;39:1795–807.

    Article  PubMed  Google Scholar 

  35. Xu Z, Ding J, Zhang L, Feng X, Zhou J, Shen X, et al. Peptidomics analysis revealed that a novel peptide VMP‑19 protects against Ang II‑induced injury in human umbilical vein endothelial cells. Mol Med Rep. 2021;23:298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao BB, Stuart L, Feener EP. Label-free quantitative analysis of one-dimensional PAGE LC/MS/MS proteome: application on angiotensin II-stimulated smooth muscle cells secretome. Mol Cell Proteom. 2008;7:2399–409.

    Article  CAS  Google Scholar 

  37. Dihazi GH, Eltoweissy M, Jahn O, Tampe B, Zeisberg M, Wulfrath HS, et al. The secretome analysis of activated human renal fibroblasts revealed beneficial effect of the modulation of the secreted peptidyl-prolyl cis-trans isomerase A in kidney fibrosis. Cells. 2020;9:1724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weisberg AD, Albornoz F, Griffin JP, Crandall DL, Elokdah H, Fogo AB, et al. Pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 attenuates angiotensin II/salt-induced aortic remodeling. Arterioscler Thromb Vasc Biol. 2005;25:365–71.

    Article  CAS  PubMed  Google Scholar 

  39. Smith G, Gallo G. To mdivi-1 or not to mdivi-1: Is that the question? Dev Neurobiol. 2017;77:1260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bordt EA, Clerc P, Roelofs BA, Saladino AJ, Tretter L, Adam-Vizi V, et al. The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev Cell. 2017;40:583–94 e586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Katherine J Elliott for critical comments.

Funding

This work was supported by the National Institutes of Health Grants (RO1 NS109382 and RO1 AG077780 to TH and SE, and R56 DK132859 to PO-O).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Eguchi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preston, K.J., Kawai, T., Torimoto, K. et al. Mitochondrial fission inhibition protects against hypertension induced by angiotensin II. Hypertens Res 47, 1338–1349 (2024). https://doi.org/10.1038/s41440-024-01610-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-024-01610-0

  • Springer Nature Singapore Pte Ltd.

Keywords

This article is cited by

Navigation