Skip to main content

Advertisement

Log in

Update in uric acid, hypertension, and cardiovascular diseases

  • Review Article
  • Current topic in Hypertension
  • Published:
Hypertension Research Submit manuscript

Abstract

A direct relationship between serum uric acid levels and hypertension, cardiovascular, renal and metabolic diseases has been reported in many basic and epidemiological studies. Among these, high blood pression is one of the most common features associated with hyperuricemia. In this regard, several small-scale interventional studies have demonstrated a significant reduction in blood pressure in hypertensive or prehypertensive patients on uric acid-lowering drugs. These observation or intervention studies have led to affirm that there is a causal relationship between uric acid and hypertension. While the clinical association between uric acid and high blood pressure is notable, no clear conclusion has yet been reached as to whether lowering uric acid is beneficial to prevent cardiovascular and renal metabolic diseases. Recently, several prospective randomized controlled intervention trials using allopurinol and other uric acid-lowering drugs have been reported, and the results from these trials were almost negative, suggesting that the correlation between hyperuricemia and cardiovascular disease has no causality. However, it is important to note that in some of these recent studies there were high dropout rates and an important fraction of participants were not hyperuricemic. Therefore, we should carry caution in interpreting the results of these studies. This review article presents the results of recent clinical trials using uric acid-lowering drugs, focusing on hypertension and cardiovascular and renal metabolic diseases, and discusses the future of uric acid therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yamanaka H, Japanese Society of G, Nucleic Acid M. Japanese guideline for the management of hyperuricemia and gout: second edition. Nucleosides Nucleotides Nucleic Acids. 2011;30:1018–29.

    Article  CAS  PubMed  Google Scholar 

  2. Hisatome I, Li P, Miake J, Taufiq F, Mahati E, Maharani N, et al. Uric acid as a risk factor for chronic kidney disease and cardiovascular disease- Japanese guideline on the management of asymptomatic hyperuricemia. Circ J. 2021;85:130–8.

    Article  CAS  PubMed  Google Scholar 

  3. Kuwabara M, Niwa K, Hisatome I, Nakagawa T, Roncal-Jimenez CA, Andres-Hernando A, et al. Asymptomatic hyperuricemia without comorbidities predicts cardiometabolic diseases: five-year Japanese cohort study. Hypertension. 2017;69:1036–44.

    Article  CAS  PubMed  Google Scholar 

  4. Li Q, Li X, Wang J, Liu H, Kwong JS, Chen H, et al. Diagnosis and treatment for hyperuricemia and gout: a systematic review of clinical practice guidelines and consensus statements. BMJ Open. 2019;9:e026677.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kuwabara M. Hyperuricemia, cardiovascular disease, and hypertension. Pulse (Basel). 2016;3:242–52. 3-4

    Article  PubMed  Google Scholar 

  6. Kuwabara M, Hisatome I, Niwa K, Bjornstad P, Roncal-Jimenez CA, Andres-Hernando A, et al. The optimal range of serum uric acid for cardiometabolic diseases: a 5-year Japanese cohort study. J Clin Med. 2020;9:942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saito Y, Tanaka A, Node K, Kobayashi Y. Uric acid and cardiovascular disease: a clinical review. J Cardiol. 2021;78:51–57.

    Article  PubMed  Google Scholar 

  8. Andres-Hernando A, Cicerchi C, Kuwabara M, Orlicky DJ, Sanchez-Lozada LG, Nakagawa T, et al. Umami-induced obesity and metabolic syndrome is mediated by nucleotide degradation and uric acid generation. Nat Metab. 2021;3:1189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417:447–52.

    Article  CAS  PubMed  Google Scholar 

  10. Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012;3:764.

    Article  PubMed  Google Scholar 

  11. Mogi M, Maruhashi T, Higashi Y, Masuda T, Nagata D, Nagai M, et al. Update on hypertension research in 2021. Hypertens Res. 2022;45:1276–97.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359:1811–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson RJ, Bakris GL, Borghi C, Chonchol MB, Feldman D, Lanaspa MA, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the national kidney foundation. Am J Kidney Dis. 2018;71:851–65.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lanaspa MA, Andres-Hernando A, Kuwabara M. Uric acid and hypertension. Hypertens Res. 2020;43:832–4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lanaspa MA, Sanchez-Lozada LG, Choi YJ, Cicerchi C, Kanbay M, Roncal-Jimenez CA, et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem. 2012;287:40732–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuwabara M, Kanbay M, Hisatome I. Uric acid and hypertension because of arterial stiffness. Hypertension 2018;72:582–4.

    Article  CAS  PubMed  Google Scholar 

  17. Kakutani-Hatayama M, Kadoya M, Okazaki H, Kurajoh M, Shoji T, Koyama H, et al. Nonpharmacological management of gout and hyperuricemia: hints for better lifestyle. Am J Lifestyle Med. 2017;11:321–9.

    Article  PubMed  Google Scholar 

  18. Kuwabara M, Kanbay M, Hisatome I. Tips and pit-falls in uric acid clinical research. Hypertens Res. 2023;46:771–3.

    Article  PubMed  Google Scholar 

  19. Kuwabara M, Niwa K, Nishi Y, Mizuno A, Asano T, Masuda K, et al. Relationship between serum uric acid levels and hypertension among Japanese individuals not treated for hyperuricemia and hypertension. Hypertens Res. 2014;37:785–9.

    Article  CAS  PubMed  Google Scholar 

  20. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA 2008;300:924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Azegami T, Uchida K, Arima F, Sato Y, Awazu M, Inokuchi M, et al. Association of childhood anthropometric measurements and laboratory parameters with high blood pressure in young adults. Hypertens Res. 2021;44:711–9.

    Article  CAS  PubMed  Google Scholar 

  22. Soletsky B, Feig DI. Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension 2012;60:1148–56.

    Article  CAS  PubMed  Google Scholar 

  23. Johnson RJ, Choi HK, Yeo AE, Lipsky PE. Pegloticase treatment significantly decreases blood pressure in patients with chronic gout. Hypertension 2019;74:95–101.

    Article  CAS  PubMed  Google Scholar 

  24. Kimura K, Hosoya T, Uchida S, Inaba M, Makino H, Maruyama S, et al. Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis. 2018;72:798–810.

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka A, Taguchi I, Teragawa H, Ishizaka N, Kanzaki Y, Tomiyama H, et al. Febuxostat does not delay progression of carotid atherosclerosis in patients with asymptomatic hyperuricemia: a randomized, controlled trial. PLoS Med. 2020;17:e1003095.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kusunose K, Yoshida H, Tanaka A, Teragawa H, Akasaki Y, Fukumoto Y, et al. Effect of febuxostat on left ventricular diastolic function in patients with asymptomatic hyperuricemia: a sub analysis of the PRIZE Study. Hypertens Res. 2022;45:106–15.

    Article  CAS  PubMed  Google Scholar 

  27. Harada K, Kario K. The dawn of a new era of targeted therapies for heart failure with preserved ejection fraction (HFpEF). Hypertens Res. 2022;45:164–6.

    Article  PubMed  Google Scholar 

  28. Tsuchihashi T. Which is more important, xanthine oxidase activity or uric acid itself, in the risk for cardiovascular disease? Hypertens Res. 2021;44:1543–5.

    Article  CAS  PubMed  Google Scholar 

  29. Agarwal V, Hans N, Messerli FH. Effect of allopurinol on blood pressure: a systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2013;15:435–42.

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Qin T, Chen J, Li Y, Wang L, Huang H, et al. Hyperuricemia and risk of incident hypertension: a systematic review and meta-analysis of observational studies. PLoS One. 2014;9:e114259.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kohagura K, Kochi M, Miyagi T, Kinjyo T, Maehara Y, Nagahama K, et al. An association between uric acid levels and renal arteriolopathy in chronic kidney disease: a biopsy-based study. Hypertens Res. 2013;36:43–49.

    Article  CAS  PubMed  Google Scholar 

  32. Chapter 3: Management of progression and complications of CKD. Kidney Int Suppl. (2011). 2013;3:73-90.

  33. Doria A, Galecki AT, Spino C, Pop-Busui R, Cherney DZ, Lingvay I, et al. Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N Engl J Med. 2020;382:2493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Badve SV, Pascoe EM, Tiku A, Boudville N, Brown FG, Cass A, et al. Effects of allopurinol on the progression of chronic kidney disease. N. Engl J Med. 2020;382:2504–13.

    Article  CAS  PubMed  Google Scholar 

  35. Sircar D, Chatterjee S, Waikhom R, Golay V, Raychaudhury A, Chatterjee S, et al. Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis. 2015;66:945–50.

    Article  CAS  PubMed  Google Scholar 

  36. Kojima S, Matsui K, Hiramitsu S, Hisatome I, Waki M, Uchiyama K, et al. Febuxostat for cerebral and cardiorenovascular events prevention study. Eur Heart J. 2019;40:1778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Okura T, Higaki J, Kurata M, Irita J, Miyoshi K, Yamazaki T, et al. Elevated serum uric acid is an independent predictor for cardiovascular events in patients with severe coronary artery stenosis: subanalysis of the Japanese Coronary Artery Disease (JCAD) Study. Circ J. 2009;73:885–91.

    Article  CAS  PubMed  Google Scholar 

  38. Akashi N, Kuwabara M, Matoba T, Kohro T, Oba Y, Kabutoya T, et al. Hyperuricemia predicts increased cardiovascular events in patients with chronic coronary syndrome after percutaneous coronary intervention: A nationwide cohort study from Japan. Front Cardiovasc Med. 2022;9:1062894.

    Article  CAS  PubMed  Google Scholar 

  39. Noman A, Ang DS, Ogston S, Lang CC, Struthers AD. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet. 2010;375:2161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. White WB, Chohan S, Dabholkar A, Hunt B, Jackson R. Cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular comorbidities. Am Heart J. 2012;164:14–20.

    Article  CAS  PubMed  Google Scholar 

  41. White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med. 2018;378:1200–10.

    Article  CAS  PubMed  Google Scholar 

  42. Johnson TA, Kamatani N, Kuwabara M. Xanthine oxidase inhibitor withdrawal syndrome? comment on the article by Choi et al. Arthritis Rheumatol. 2019;71:1966–7.

    Article  PubMed  Google Scholar 

  43. Mackenzie IS, Ford I, Nuki G, Hallas J, Hawkey CJ, Webster J, et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet. 2020;396:1745–57.

    Article  CAS  PubMed  Google Scholar 

  44. Mackenzie IS, Hawkey CJ, Ford I, Greenlaw N, Pigazzani F, Rogers A, et al. Allopurinol versus usual care in UK patients with ischaemic heart disease (ALL-HEART): a multicentre, prospective, randomised, open-label, blinded-endpoint trial. Lancet. 2022;400:1195–205.

    Article  CAS  PubMed  Google Scholar 

  45. Cipolletta E, Tata LJ, Nakafero G, Avery AJ, Mamas MA, Abhishek A. Association between gout flare and subsequent cardiovascular events among patients with gout. JAMA 2022;328:440–50.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Anderson JL, Knowlton KU. Cardiovascular events and gout flares. JAMA 2022;328:425–6.

    Article  PubMed  Google Scholar 

  47. Klauser AS, Halpern EJ, Strobl S, Gruber J, Feuchtner G, Bellmann-Weiler R, et al. Dual-energy computed tomography detection of cardiovascular monosodium urate deposits in patients with gout. JAMA Cardiol. 2019;4:1019–28.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Barazani SH, Chi WW, Pyzik R, Chang H, Jacobi A, O’Donnell T, et al. Quantification of uric acid in vasculature of patients with gout using dual-energy computed tomography. World J Radio. 2020;12:184–94.

    Article  Google Scholar 

  49. Hamaguchi S, Furumoto T, Tsuchihashi-Makaya M, Goto K, Goto D, Yokota T, et al. Hyperuricemia predicts adverse outcomes in patients with heart failure. Int J Cardiol. 2011;151:143–7.

    Article  PubMed  Google Scholar 

  50. Anker SD, Doehner W, Rauchhaus M, Sharma R, Francis D, Knosalla C, et al. Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging. Circulation. 2003;107:1991–7.

    Article  PubMed  Google Scholar 

  51. Kojima S, Sakamoto T, Ishihara M, Kimura K, Miyazaki S, Yamagishi M, et al. Prognostic usefulness of serum uric acid after acute myocardial infarction (the Japanese Acute Coronary Syndrome Study). Am J Cardiol. 2005;96:489–95.

    Article  CAS  PubMed  Google Scholar 

  52. Krishnan E. Hyperuricemia and incident heart failure. Circ Heart Fail. 2009;2:556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang M, Solomon DH, Desai RJ, Kang EH, Liu J, Neogi T, et al. Assessment of cardiovascular risk in older patients with gout initiating febuxostat versus allopurinol: a population-based cohort study. Circulation. 2018(e-pub ahead of print 2018/06/15; https://doi.org/10.1161/CIRCULATIONAHA.118.033992).

  54. Nakagomi A, Saiki Y, Noma S, Kohashi K, Morisawa T, Kosugi M, et al. Effects of febuxostat and allopurinol on the inflammation and cardiac function in chronic heart failure patients with hyperuricemia. IJC Metab Endocr. 2015;8:46–55.

    Article  Google Scholar 

  55. Struthers AD, Donnan PT, Lindsay P, McNaughton D, Broomhall J, MacDonald TM. Effect of allopurinol on mortality and hospitalisations in chronic heart failure: a retrospective cohort study. Heart. 2002;87:229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hare JM, Mangal B, Brown J, Fisher C Jr, Freudenberger R, Colucci WS, et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol. 2008;51:2301–9.

    Article  CAS  PubMed  Google Scholar 

  57. Givertz MM, Anstrom KJ, Redfield MM, Deswal A, Haddad H, Butler J, et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the xanthine oxidase inhibition for hyperuricemic heart failure patients (EXACT-HF) study. Circulation. 2015;131:1763–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ogino K, Kato M, Furuse Y, Kinugasa Y, Ishida K, Osaki S, et al. Uric acid-lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled crossover preliminary study. Circ Heart Fail. 2010;3:73–81.

    Article  CAS  PubMed  Google Scholar 

  59. Cappola TP, Kass DA, Nelson GS, Berger RD, Rosas GO, Kobeissi ZA, et al. Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation. 2001;104:2407–11.

    Article  CAS  PubMed  Google Scholar 

  60. Gavin AD, Struthers AD. Allopurinol reduces B-type natriuretic peptide concentrations and haemoglobin but does not alter exercise capacity in chronic heart failure. Heart. 2005;91:749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cingolani HE, Plastino JA, Escudero EM, Mangal B, Brown J, Perez NG. The effect of xanthine oxidase inhibition upon ejection fraction in heart failure patients: La Plata Study. J Card Fail. 2006;12:491–8.

    Article  CAS  PubMed  Google Scholar 

  62. Yokota T, Fukushima A, Kinugawa S, Okumura T, Murohara T, Tsutsui H. Randomized trial of effect of urate-lowering agent febuxostat in chronic heart failure patients with hyperuricemia (LEAF-CHF). Int Heart J. 2018;59:976–82.

    Article  CAS  PubMed  Google Scholar 

  63. Ono K, Iwasaki YK, Akao M, Ikeda T, Ishii K, Inden Y, et al. JCS/JHRS 2020 guideline on pharmacotherapy of cardiac arrhythmias. Circ J 2022;86:1790–924.

    Article  PubMed  Google Scholar 

  64. Maharani N, Kuwabara M, Hisatome I. Hyperuricemia and atrial fibrillation. Int Heart J. 2016;57:395–9.

    Article  CAS  PubMed  Google Scholar 

  65. Letsas KP, Korantzopoulos P, Filippatos GS, Mihas CC, Markou V, Gavrielatos G, et al. Uric acid elevation in atrial fibrillation. Hellenic J Cardiol. 2010;51:209–13.

    PubMed  Google Scholar 

  66. Wang X, Hou Y, Wang X, Li Z, Wang X, Li H, et al. Relationship between serum uric acid levels and different types of atrial fibrillation: An updated meta-analysis. Nutr Metab Cardiovasc Dis. 2021;31:2756–65.

    Article  CAS  PubMed  Google Scholar 

  67. Kawasoe S, Kubozono T, Yoshifuku S, Ojima S, Oketani N, Miyata M, et al. Uric Acid Level and Prevalence of Atrial Fibrillation in a Japanese General Population of 285,882. Circ J. 2016;80:2453–9.

    Article  PubMed  Google Scholar 

  68. Kuwabara M, Niwa K, Nishihara S, Nishi Y, Takahashi O, Kario K, et al. Hyperuricemia is an independent competing risk factor for atrial fibrillation. Int J Cardiol. 2017;231:137–42.

    Article  PubMed  Google Scholar 

  69. Kuwabara M, Hisatome I. Gender difference in the association between uric acid and atrial fibrillation. Circ J. 2018;83:27–29.

    Article  PubMed  Google Scholar 

  70. Li N, Dobrev D. Hyperuricemia: a causal player or a bystander linking inflammatory signaling and atrial fibrillation? Int J Cardiol. 2017;231:177–8.

    Article  PubMed  Google Scholar 

  71. Maharani N, Ting YK, Cheng J, Hasegawa A, Kurata Y, Li P, et al. Molecular mechanisms underlying urate-induced enhancement of Kv1.5 channel expression in HL-1 atrial myocytes. Circ J. 2015;79:2659–68.

    Article  CAS  PubMed  Google Scholar 

  72. Keenan T, Zhao W, Rasheed A, Ho WK, Malik R, Felix JF, et al. Causal assessment of serum urate levels in cardiometabolic diseases through a Mendelian randomization study. J Am Coll Cardiol. 2016;67:407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Palmer TM, Nordestgaard BG, Benn M, Tybjaerg-Hansen A, Davey Smith G, Lawlor DA, et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: mendelian randomisation analysis of two large cohorts. BMJ. 2013;347:f4262.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sedaghat S, Pazoki R, Uitterlinden AG, Hofman A, Stricker BH, Ikram MA, et al. Association of uric acid genetic risk score with blood pressure: the Rotterdam study. Hypertension 2014;64:1061–6.

    Article  CAS  PubMed  Google Scholar 

  75. Chaves FJ, Corella D, Blesa S, Mansego ML, Marin P, Portoles O, et al. Xanthine oxidoreductase polymorphisms: influence in blood pressure and oxidative stress levels. Pharmacogenet Genomics. 2007;17:589–96.

    Article  CAS  PubMed  Google Scholar 

  76. Wu B, Hao Y, Shi J, Geng N, Li T, Chen Y, et al. Association between xanthine dehydrogenase tag single nucleotide polymorphisms and essential hypertension. Mol Med Rep. 2015;12:5685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kleber ME, Delgado G, Grammer TB, Silbernagel G, Huang J, Kramer BK, et al. Uric acid and cardiovascular events: a Mendelian randomization study. J Am Soc Nephrol. 2015;26:2831–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gill D, Cameron AC, Burgess S, Li X, Doherty DJ, Karhunen V, et al. Urate, blood pressure, and cardiovascular disease: evidence from Mendelian randomization and meta-analysis of clinical trials. Hypertension. 2021;77:383–92.

    Article  CAS  PubMed  Google Scholar 

  79. Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang DH, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr. 2007;86:899–906.

    CAS  PubMed  Google Scholar 

  80. Choi HK, Soriano LC, Zhang Y, Rodriguez LA. Antihypertensive drugs and risk of incident gout among patients with hypertension: population based case-control study. BMJ 2012;344:d8190.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Koto R, Nakajima A, Horiuchi H, Yamanaka H. Serum uric acid control for prevention of gout flare in patients with asymptomatic hyperuricaemia: a retrospective cohort study of health insurance claims and medical check-up data in Japan. Ann Rheum Dis. 2021;80:1483–90.

    Article  CAS  PubMed  Google Scholar 

  82. Higgins P, Walters MR, Murray HM, McArthur K, McConnachie A, Lees KR, et al. Allopurinol reduces brachial and central blood pressure, and carotid intima-media thickness progression after ischaemic stroke and transient ischaemic attack: a randomised controlled trial. Heart. 2014;100:1085–92.

    Article  CAS  PubMed  Google Scholar 

  83. Segal MS, Srinivas TR, Mohandas R, Shuster JJ, Wen X, Whidden E, et al. The effect of the addition of allopurinol on blood pressure control in African Americans treated with a thiazide-like diuretic. J Am Soc Hypertens. 2015;9:610–619.e611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincon A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5:1388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goicoechea M, Garcia de Vinuesa S, Verdalles U, Verde E, Macias N, Santos A, et al. Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial. Am J Kidney Dis. 2015;65:543–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Richard Johnson (Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, CO, USA) for his advice of this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanari Kuwabara.

Ethics declarations

Conflict of interest

Dr Kuwabara reports a research grant from JSPS KAKENHI (Grant Number 20K17168 and 23K07493), Okinaka Memorial Institute for Medical Research, and Toranomon Hospital. The remaining authors have nothing to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwabara, M., Kodama, T., Ae, R. et al. Update in uric acid, hypertension, and cardiovascular diseases. Hypertens Res 46, 1714–1726 (2023). https://doi.org/10.1038/s41440-023-01273-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01273-3

  • Springer Nature Singapore Pte Ltd.

Keywords

This article is cited by

Navigation