Skip to main content
Log in

Contribution of afferent renal nerve signals to acute and chronic blood pressure regulation in stroke-prone spontaneously hypertensive rats

  • Article
  • ISH2022–Fast track: Renal Denervation
  • Published:
Hypertension Research Submit manuscript

Abstract

The activation of sympathetic nervous system plays a critical role in the development of hypertension. The input from afferent renal nerves may affect central sympathetic outflow; however, its contribution to the development of hypertension remains unclear. We investigated the role of afferent renal nerves in acute and chronic blood pressure regulation using normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Acute chemical stimulation of afferent renal nerves elicited larger increases in blood pressure and renal sympathetic nerve activity in young 9-week-old SHRSP compared to WKY. Selective afferent renal denervation (ARDN) and conventional total renal denervation (TRDN) ablating both afferent and efferent nerves in young SHRSP revealed that only TRDN, but not ARDN, chronically attenuated blood pressure elevation. ARDN did not affect plasma renin activity or plasma angiotensin II levels, whereas TRDN decreased both. Neither TRDN nor ARDN affected central sympathetic outflow and systemic sympathetic activity determined by neuronal activity in the parvocellular region of hypothalamic paraventricular nucleus and rostral ventrolateral medulla and by plasma and urinary norepinephrine levels, respectively. Renal injury was not apparent in young SHRSP compared with WKY, suggesting that renal afferent input might not be activated in young SHRSP. In conclusion, the chronic input from afferent renal nerves does not contribute to the development of hypertension in SHRSP despite the increased blood pressure response to the acute stimulation of afferent renal nerves. Efferent renal nerves may be involved in the development of hypertension via activation of the renin-angiotensin system in SHRSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hirooka Y. Sympathetic activation in hypertension: importance of the central nervous system. Am J Hypertens. 2020;33:914–26. https://doi.org/10.1093/ajh/hpaa074

    Article  CAS  Google Scholar 

  2. Katsurada K, Ogoyama Y, Imai Y, Patel KP, Kario K. Renal denervation based on experimental rationale. Hypertens Res. 2021;44:1385–94. https://doi.org/10.1038/s41440-021-00746-7

    Article  CAS  Google Scholar 

  3. Osborn JW, Foss JD. Renal nerves and long-term control of arterial pressure. Compr Physiol. 2017;7:263–320. https://doi.org/10.1002/cphy.c150047

    Article  Google Scholar 

  4. Osborn JW, Tyshynsky R, Vulchanova L. Function of renal nerves in kidney physiology and pathophysiology. Annu Rev Physiol. 2021;83:429–50. https://doi.org/10.1146/annurev-physiol-031620-091656

    Article  CAS  Google Scholar 

  5. Zheng H, Patel KP. Integration of renal sensory afferents at the level of the paraventricular nucleus dictating sympathetic outflow. Auton Neurosci. 2017;204:57–64. https://doi.org/10.1016/j.autneu.2016.08.008

    Article  Google Scholar 

  6. Ye C, Qiu Y, Zhang F, Chen AD, Zhou H, Wang JJ, et al. Chemical stimulation of renal tissue induces sympathetic activation and a pressor response via the paraventricular nucleus in rats. Neurosci Bull. 2020;36:143–52. https://doi.org/10.1007/s12264-019-00417-1

    Article  CAS  Google Scholar 

  7. Fujisawa Y, Nagai Y, Lei B, Nakano D, Fukui T, Hitomi H, et al. Roles of central renin-angiotensin system and afferent renal nerve in the control of systemic hemodynamics in rats. Hypertens Res. 2011;34:1228–32. https://doi.org/10.1038/hr.2011.115

    Article  CAS  Google Scholar 

  8. Xu B, Zheng H, Liu X, Patel KP. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons. Am J Physiol Heart Circ Physiol. 2015;308:H1103–111. https://doi.org/10.1152/ajpheart.00862.2014

    Article  CAS  Google Scholar 

  9. Iyonaga T, Shinohara K, Mastuura T, Hirooka Y, Tsutsui H. Brain perivascular macrophages contribute to the development of hypertension in stroke-prone spontaneously hypertensive rats via sympathetic activation. Hypertens Res. 2020;43:99–110. https://doi.org/10.1038/s41440-019-0333-4

    Article  CAS  Google Scholar 

  10. Shinohara K, Hirooka Y, Kishi T, Sunagawa K. Reduction of nitric oxide-mediated γ-amino butyric acid release in rostral ventrolateral medulla is involved in superoxide-induced sympathoexcitation of hypertensive rats. Circ J. 2012;76:2814–21. https://doi.org/10.1253/circj.CJ-12-0399

    Article  CAS  Google Scholar 

  11. Nishihara M, Hirooka Y, Matsukawa R, Kishi T, Sunagawa K. Oxidative stress in the rostral ventrolateral medulla modulates excitatory and inhibitory inputs in spontaneously hypertensive rats. J Hypertens. 2012;30:97–106. https://doi.org/10.1097/HJH.0b013e32834e1df4

    Article  CAS  Google Scholar 

  12. Mannoji H, Saku K, Nishikawa T, Tohyama T, Kamada K, Abe K, et al. Estimation of the baroreflex total loop gain by the power spectral analysis of continuous arterial pressure recordings. Am J Physiol Hear Circ Physiol. 2019;316:H828–H839. https://doi.org/10.1152/ajpheart.00681.2018

    Article  CAS  Google Scholar 

  13. Zheng H, Katsurada K, Liu X, Knuepfer MM, Patel KP. Specific afferent renal denervation prevents reduction in neuronal nitric oxide synthase within the paraventricular nucleus in rats with chronic heart failure. Hypertension. 2018;72:667–75. https://doi.org/10.1161/HYPERTENSIONAHA.118.11071

    Article  CAS  Google Scholar 

  14. Banek CT, Knuepfer MM, Foss JD, Fiege JK, Asirvatham-Jeyaraj N, van Helden D, et al. Resting afferent renal nerve discharge and renal inflammation: elucidating the role of afferent and efferent renal nerves in deoxycorticosterone acetate salt hypertension. Hypertension. 2016;68:1415–23. https://doi.org/10.1161/HYPERTENSIONAHA.116.07850

    Article  CAS  Google Scholar 

  15. Foss JD, Wainford RD, Engeland WC, Fink GD, Osborn JW. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am J Physiol Integr Comp Physiol. 2014;308:R112–R122. https://doi.org/10.1152/ajpregu.00427.2014

    Article  CAS  Google Scholar 

  16. Ong J, Kinsman BJ, Sved AF, Rush BM, Tan RJ, Carattino MD, et al. Renal sensory nerves increase sympathetic nerve activity and blood pressure in 2-kidney 1-clip hypertensive mice. J Neurophysiol. 2019;122:358–67. https://doi.org/10.1152/jn.00173.2019

    Article  CAS  Google Scholar 

  17. Nagaoka A, Kakihana M. Effects of renal sympathectomy on sodium and water excretion in stroke-prone spontaneously hypertensive rats. Jpn J Pharm. 1982;32:591–7. 10.37//0033-2909.I26.1.78

    Article  CAS  Google Scholar 

  18. Nakagawa T, Hasegawa Y, Uekawa K, Ma M, Katayama T, Sueta D, et al. Renal denervation prevents stroke and brain injury via attenuation of oxidative stress in hypertensive rats. J Am Heart Assoc. 2013;2:e000375 https://doi.org/10.1161/JAHA.113.000375

    Article  CAS  Google Scholar 

  19. Lappe RW, Webb RL, Brody MJ. Selective destruction of renal afferent versus efferent nerves in rats. Am J Physiol Regul Integr Comp Physiol. 1985;18:R634–637. https://doi.org/10.1152/ajpregu.1985.249.5.r634

    Article  Google Scholar 

  20. Kurtz A. Control of renin synthesis and secretion. Am J Hypertens. 2012;25:839–47. https://doi.org/10.1038/ajh.2011.246

    Article  CAS  Google Scholar 

  21. Kaschina E, Unger T. Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press. 2003;12:70–88. https://doi.org/10.1080/08037050310001057

    Article  CAS  Google Scholar 

  22. Maeso R, Navarro-Cid J, Muñoz-García R, Rodrigo E, Ruilope LM, Lahera V, et al. Losartan reduces phenylephrine constrictor response in aortic rings from spontaneously hypertensive rats. Hypertension. 1996;28:967–72. https://doi.org/10.1161/01.HYP.28.6.967

    Article  CAS  Google Scholar 

  23. Li JS, Touyz RM, Schiffrin EL. Effects of AT1 and AT2 angiotensin receptor antagonists in angiotensin II-infused rats. Hypertension. 1998;31:487–92. https://doi.org/10.1161/01.hyp.31.1.487

    Article  CAS  Google Scholar 

  24. Tea BS, Der Sarkissian S, Touyz RM, Hamet P, DeBlois D. Proapoptotic and growth-inhibitory role of angiotensin II type 2 receptor in vascular smooth muscle cells of spontaneously hypertensive rats in vivo. Hypertension. 2000;35:1069–73. https://doi.org/10.1161/01.hyp.35.5.1069

    Article  CAS  Google Scholar 

  25. Kobori H, Ichihara A, Suzuki H, Miyashita Y, Hayashi M, Saruta T. Thyroid hormone stimulates renin synthesis in rats without involving the sympathetic nervous system. Am J Physiol. 1997;272:E227–232. https://doi.org/10.1152/ajpendo.1997.272.2.E227

    Article  CAS  Google Scholar 

  26. Qiu Y, Zheng F, Ye C, Chen AD, Wang JJ, Chen Q, et al. Angiotensin Type 1 receptors and superoxide anion production in hypothalamic paraventricular nucleus contribute to capsaicin-induced excitatory renal reflex and sympathetic activation. Neurosci Bull. 2020;36:463–74. https://doi.org/10.1007/s12264-019-00460-y

    Article  CAS  Google Scholar 

  27. Chen AD, Zhang SJ, Yuan N, Xu Y, De W, Gao XY, et al. Angiotensin AT1 receptors in paraventricular nucleus contribute to sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats. Exp Physiol. 2011;96:94–103. https://doi.org/10.1113/expphysiol.2010.054353

    Article  CAS  Google Scholar 

  28. Reja V, Goodchild AK, Phillips JK, Pilowsky PM. Upregulation of angiotensin AT1 receptor and intracellular kinase gene expression in hypertensive rats. Clin Exp Pharm Physiol. 2006;33:690–5. https://doi.org/10.1111/j.1440-1681.2006.04420.x

    Article  CAS  Google Scholar 

  29. Milanez MIO, Veiga AC, Martins BS, Pontes RB, Bergamaschi CT, Campos RR, et al. Renal sensory activity regulates the γ-aminobutyric acidergic inputs to the paraventricular nucleus of the hypothalamus in goldblatt hypertension. Front Physiol. 2020;11:601237 https://doi.org/10.3389/fphys.2020.601237

    Article  Google Scholar 

  30. Veiga AC, Milanez MIO, Ferreira GR, Lopes NR, Santos CP, de Angelis K, et al. Selective afferent renal denervation mitigates renal and splanchnic sympathetic nerve overactivity and renal function in chronic kidney disease-induced hypertension. J Hypertens. 2020;38:765–73. https://doi.org/10.1097/HJH.0000000000002304

    Article  CAS  Google Scholar 

  31. Foss JD, Fiege J, Shimizu Y, Collister JP, Mayerhofer T, Wood L, et al. Role of afferent and efferent renal nerves in the development of AngII-salt hypertension in rats. Physiol Rep. 2018;6:e13602 https://doi.org/10.14814/phy2.13602

    Article  CAS  Google Scholar 

  32. Foss JD, Fink GD, Osborn JW. Differential role of afferent and efferent renal nerves in the maintenance of early- and late-phase Dahl S hypertension. Am J Physiol Integr Comp Physiol. 2015;310:R262–R267. https://doi.org/10.1152/ajpregu.00408.2015

    Article  Google Scholar 

  33. Katsurada K, Shinohara K, Aoki J, Nanto S, Kario K. Renal denervation: basic and clinical evidence. Hypertens Res. 2022;45:198–209. https://doi.org/10.1038/s41440-021-00827-7

    Article  Google Scholar 

  34. Xia M, Liu T, Chen D, Huang Y. Efficacy and safety of renal denervation for hypertension in patients with chronic kidney disease: a meta-analysis. Int J Hyperth. 2021;38:732–42. https://doi.org/10.1080/02656736.2021.1916100

    Article  CAS  Google Scholar 

  35. Ahmad Y, Francis DP, Bhatt DL, Howard JP. Renal denervation for hypertension: a systematic review and meta-analysis of randomized, blinded, placebo-controlled trials. JACC Cardiovasc Inter. 2021;14:2614–24. https://doi.org/10.1016/j.jcin.2021.09.020

    Article  Google Scholar 

  36. Ogoyama Y, Tada K, Abe M, Nanto S, Shibata H, Mukoyama M, et al. Effects of renal denervation on blood pressures in patients with hypertension: a systematic review and meta-analysis of randomized sham-controlled trials. Hypertens Res. 2022;45:210–20. https://doi.org/10.1038/s41440-021-00761-8

    Article  Google Scholar 

  37. Kario K, Yokoi Y, Okamura K, Fujihara M, Ogoyama Y, Yamamoto E, et al. Catheter-based ultrasound renal denervation in patients with resistant hypertension: the randomized, controlled REQUIRE trial. Hypertens Res. 2022;45:221–31. https://doi.org/10.1038/s41440-021-00754-7

    Article  Google Scholar 

  38. Mogi M, Maruhashi T, Higashi Y, Masuda T, Nagata D, Nagai M, et al. Update on hypertension research in 2021. Hypertens Res. 2022;45:1276–97. https://doi.org/10.1038/s41440-022-00967-4

    Article  Google Scholar 

  39. Rey J, Townsend RR. Renal denervation: a review. Am J Kidney Dis. 2022;80:527–35. https://doi.org/10.1053/j.ajkd.2022.03.015

    Article  Google Scholar 

  40. Banek CT, Gauthier MM, Baumann DC, van Helden D, Asirvatham-Jeyaraj N, Panoskaltsis-Mortari A, et al. Targeted afferent renal denervation reduces arterial pressure but not renal inflammation in established DOCA-salt hypertension in the rat. Am J Physiol Regul Integr Comp Physiol. 2018;314:R883–R891. https://doi.org/10.1152/ajpregu.00416.2017

    Article  CAS  Google Scholar 

  41. Kim S, Tokuyama M, Hosoi M, Yamamoto K. Adrenal and circulating renin-angiotensin system in stroke-prone hypertensive rats. Hypertension. 1992;20:280–91. https://doi.org/10.1161/01.HYP.20.3.280

    Article  Google Scholar 

  42. Rudd MA, Grippo RS, Arendshorst WJ. Acute renal denervation produces a diuresis and natriuresis in young SHR but not WKY rats. Am J Physiol. 1986;251:F655–661. https://doi.org/10.1152/ajprenal.1986.251.4.F655

    Article  CAS  Google Scholar 

  43. Machino T, Murakoshi N, Sato A, Xu D, Hoshi T, Kimura T, et al. Anti-hypertensive effect of radiofrequency renal denervation in spontaneously hypertensive rats. Life Sci. 2014;110:86–92. https://doi.org/10.1016/j.lfs.2014.06.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP21K08032 (KS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Shinohara.

Ethics declarations

Conflict of interest

KS reports grants from Daiichi Sankyo, Nippon Boehringer Ingelheim, and Otsuka Medical Devices. HT reports grants and/or personal fees from Daiichi Sankyo, Novartis Pharma, Otsuka Pharmaceutical, Pfizer Japan, Mitsubishi Tanabe Pharma, Teijin Pharma, Nippon Boehringer Ingelheim, AstraZeneca, Ono Pharmaceutical, Kowa, IQVIA Service Japan, MEDINET, Medical Innovation Kyushu, Bayer Yakuhin, Johnson & Johnson, NEC, Nippon Rinsho and Japanese Heart Failure Society. Other authors report no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, S., Shinohara, K., Kashihara, S. et al. Contribution of afferent renal nerve signals to acute and chronic blood pressure regulation in stroke-prone spontaneously hypertensive rats. Hypertens Res 46, 268–279 (2023). https://doi.org/10.1038/s41440-022-01091-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-01091-z

  • Springer Nature Singapore Pte Ltd.

Keywords

This article is cited by

Navigation