Skip to main content

Advertisement

Log in

Phenotypic expressions of the optic disc in primary open-angle glaucoma

  • Article
  • Published:
Eye Submit manuscript

Abstract

Background

Which phenotypes are we able to recognize in the optic nerve of patients with primary open angle glaucoma?

Methods

Retrospective interventional case series. 885 eyes from 885 patients at an outpatient tertiary care centre who met specified criteria for POAG were included. Disc photographs were classified by three glaucoma specialists into the following phenotypes according to their predominant characteristics: (1) concentric rim thinning, (2) focal rim thinning, (3) acquired pit of the optic nerve (APON), (4) tilted, (5) extensive peripapillary atrophy (PPA), and (6) broad rim thinning. Demographic, medical, and ocular data were collected. Kruskal–Wallis was used as a non-parametric test and pairwise comparison was performed by using Wilcoxon rank sum test corrected.

Results

Phenotypic distribution was as follows: 398(45%) focal thinning, 153(18%) concentric thinning, 153(17%) broad thinning, 109(12%) tilted, 47(5%) extensive PPA and 25(3%) APON. Phenotypic traits of interest included a higher proportion of female patients with the focal thinning phenotype (p = 0.015); myopia (p = 0.000), Asian race (OR: 8.8, p = 0.000), and younger age (p = 0.000) were associated with the tilted phenotype; the concentric thinning patients had thicker RNFL (p = 0.000), higher MD (p = 0.008) and lower PSD (p = 0.043) than broad thinning, despite no difference in disc sizes (p = 0.849). The focal thinning group had a localized VF pattern with high PSD compared to concentric thinning (p = 0.005).

Conclusion

We report six phenotypic classifications of POAG patients with demographic and ocular differences between phenotypes. Future refinement of phenotypes should allow enhanced identification of genetic associations and improved individualization of patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2: UpSet plot for inter-grader agreement.
Fig. 3

Similar content being viewed by others

Data availability

All data are available from the corresponding author upon a reasonable request.

References

  1. Quigley HA, Vitale S. Models of open-angle glaucoma prevalence and incidence in the United States. Investig Ophthalmol Vis Sci. 1997;38:83–91.

    CAS  Google Scholar 

  2. Weinreb RN, Tee Khaw P. Primary open-angle glaucoma. Lancet (Lond, Engl). 2004;363:1711–20. https://doi.org/10.1016/S0140-6736(04)16257-0

    Article  Google Scholar 

  3. Caprioli, J.: Clinical evaluation of the optic nerve in glaucoma. Tr. Am Ophth. Soc. 1994;92:589–641.

  4. Nicolela MT, Drance SM. Various glaucomatous optic nerve appearances: Clinical correlations. Ophthalmology. 1996;103:640–9. https://doi.org/10.1016/S0161-6420(96)30640-4

    Article  CAS  PubMed  Google Scholar 

  5. Radius RL, Maumenee AE, Green WR. Pit-like changes of the optic nerve head in open-angle glaucoma. Br J Ophthalmol. 1978;62:389–93. https://doi.org/10.1136/BJO.62.6.389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Javitt JC, Spaeth GL, Katz LJ, Poryzees E, Addiego R. Acquired Pits of the Optic Nerve: Increased Prevalence in Patients with Low-tension Glaucoma. Ophthalmology. 1990;97:1038–44. https://doi.org/10.1016/S0161-6420(90)32466-1

    Article  CAS  PubMed  Google Scholar 

  7. Ugurlu S, Weitzman M, Nduaguba C, Caprioli J. Acquired pit of the optic nerve: a risk factor for progression of glaucoma. Am J Ophthalmol. 1998;125:457–64. https://doi.org/10.1016/S0002-9394(99)80185-8

    Article  CAS  PubMed  Google Scholar 

  8. Nduaguba C, Ugurlu S, Caprioli J. Acquired pits of the optic nerve in glaucoma: Prevalence and associated visual field loss. Acta Ophthalmol Scand. 1998;76:273–7. https://doi.org/10.1034/J.1600-0420.1998.760304.X

    Article  CAS  PubMed  Google Scholar 

  9. Jonas JB, Nguyen XN, Gusek GC, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci. 1989;30:908–18.

  10. Dandona L, Dandona R. What is the global burden of visual impairment? BMC Med. 2006;4. https://doi.org/10.1186/1741-7015-4-6

  11. R: The R Project for Statistical Computing. Accessed June 1, 2022. https://www.r-project.org/

  12. Abdillah A, Sutisna A, Tarjiah I, Fitria D, Widiyarto T. Application of Multinomial Logistic Regression to analyze learning difficulties in statistics courses. In: Journal of Physics: Conference Series. 1490. Institute of Physics Publishing; 2020. https://doi.org/10.1088/1742-6596/1490/1/012012

  13. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: Visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92. https://doi.org/10.1109/TVCG.2014.2346248

    Article  PubMed  PubMed Central  Google Scholar 

  14. Broadway DC, Nicolela MT, Drance SM. Optic disk appearances in primary open-angle glaucoma. Survey Ophthalmol. 1999;43. https://doi.org/10.1016/S0039-6257(99)00007-7

  15. Tan NYQ, Sng CCA, Jonas JB, Wong TY, Jansonius NM, Ang M. Glaucoma in myopia: diagnostic dilemmas. Br J Ophthalmol. 2019;103:1347–55. https://doi.org/10.1136/BJOPHTHALMOL-2018-313530

    Article  PubMed  Google Scholar 

  16. Spaeth GL. A new classification of glaucoma including focal glaucoma. Survey Ophthalmol. 1994;38. https://doi.org/10.1016/0039-6257(94)90042-6

  17. Geijssen HC, Greve EL. The spectrum of primary open angle glaucoma I: Senile sclerotic glaucoma versus high tension glaucoma. Ophthalmic Surg. 1987;18:207–13. https://doi.org/10.3928/1542-8877-19870301-11

    Article  CAS  PubMed  Google Scholar 

  18. Downs JC, Girkin CA. Lamina Cribrosa in Glaucoma. https://doi.org/10.1097/ICU.0000000000000354

  19. Albon J, Purslow PP, Karwatowski WSS, Easty DL. Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol. 2000;84:318–23. https://doi.org/10.1136/BJO.84.3.318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zukerman R, Harris A, Vercellin AV, Siesky B, Pasquale LR, Ciulla TA. Molecular Genetics of Glaucoma: Subtype and Ethnicity Considerations. Genes. 2020;12:1–36. https://doi.org/10.3390/GENES12010055

    Article  Google Scholar 

  21. Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology. 1999;106:2010–5. https://doi.org/10.1016/S0161-6420(99)90416-5

    Article  CAS  PubMed  Google Scholar 

  22. Jonas JB, Wang YX, Dong L, Panda-Jonas S. High Myopia and Glaucoma-Like Optic Neuropathy. Asia-Pac J Ophthalmol (Phila, Pa). 2020;9:234–8. https://doi.org/10.1097/APO.0000000000000288

    Article  Google Scholar 

  23. Yo C. Asian Americans: myopia and refractive surgery. Int Ophthalmol Clin. 2003;43:173–87. https://doi.org/10.1097/00004397-200343040-00015

    Article  PubMed  Google Scholar 

  24. Geijssen HC, Greve EL. Focal ischaemic normal pressure glaucoma versus high pressure glaucoma. Doc Ophthalmol Adv Ophthalmol. 1990;75:291–302. https://doi.org/10.1007/BF00164843

    Article  CAS  Google Scholar 

  25. Nakazawa T, Fuse N, Omodaka K, Aizawa N, Kuwahara S, Nishida K. Different types of optic disc shape in patients with advanced open-angle glaucoma. Jpn J Ophthalmol. 2010;54:291–5. https://doi.org/10.1007/S10384-010-0816-Y

    Article  PubMed  Google Scholar 

  26. Park IK, Kim KW, Moon NJ, Shin JH, Chun YS. Comparison of superior and inferior visual field asymmetry between normal-tension and high-tension glaucoma. J Glaucoma. 2021;30:648–55. https://doi.org/10.1097/IJG.0000000000001872

    Article  PubMed  Google Scholar 

  27. Park JH, Yoo C, Park J, Kim YY. Visual Field Defects in Young Patients With Open-angle Glaucoma: Comparison Between High-tension and Normal-tension Glaucoma. J Glaucoma. 2017;26:541–7. https://doi.org/10.1097/IJG.0000000000000667

    Article  PubMed  Google Scholar 

  28. Ganeshrao SB, Senthil S, Choudhari N, Durga SS, Garudadri CS. Comparison of visual field progression rates among the high tension glaucoma, primary angle closure glaucoma, and normal tension glaucoma. Investig Ophthalmol Vis Sci. 2019;60:889–900. https://doi.org/10.1167/iovs.18-25421

    Article  Google Scholar 

  29. Häntzschel J, Terai N, Sorgenfrei F, Haustein M, Pillunat K, Pillunat LE. Morphological and functional differences between normal-tension and high-tension glaucoma. Acta Ophthalmol. 2013;91. https://doi.org/10.1111/aos.12061

  30. Caprioli J, Spaeth GL. Comparison of visual field defects in the low-tension glaucomas with those in the high-tension glaucomas. Am J Ophthalmol. 1984;97:730–7. https://doi.org/10.1016/0002-9394(84)90505-1

    Article  CAS  PubMed  Google Scholar 

  31. Ekici E, Moghimi S, Hou H, Proudfoot J, Zangwill LM, Do JL, et al. Central visual field defects in patients with distinct glaucomatous optic disc phenotypes. Am J Ophthalmol. 2021;223:229–40. https://doi.org/10.1016/j.ajo.2020.10.015

  32. Mahmoudinezhad G, Lin M, Rabiolo A, Morales E, Hirunpatravong P, Sharifipour F, et al. Rate of visual field decay in glaucomatous eyes with acquired pits of the optic nerve. Br J Ophthalmol. 2021;105:381–6. https://doi.org/10.1136/bjophthalmol-2020-315980

  33. Moghimi S, Hosseini H, Riddle J, et al. Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy. Investig Ophthalmol Vis Sci. 2012;53:4519–30. https://doi.org/10.1167/iovs.11-8362

    Article  Google Scholar 

  34. Caprioli J, Miller JM. Optic disc rim area is related to disc size in normal subjects. Arch Ophthalmol. 1987;105:1683–5. https://doi.org/10.1001/archopht.1987.01060120081030

  35. Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol. 1995;113:586–96. https://doi.org/10.1001/archopht.1995.01100050054031

  36. Swaminathan SS, Jammal AA, Berchuck SI, Medeiros FA. Rapid initial OCT RNFL thinning is predictive of faster visual field loss during extended follow-up in glaucoma. Am J Ophthalmol. 2021;229:100. https://doi.org/10.1016/J.AJO.2021.03.019

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miki A, Medeiros FA, Weinreb RN, Jain S, He F, Sharpsten L, et al. Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes. Ophthalmology. 2014;121:1350–8. https://doi.org/10.1016/j.ophtha.2014.01.017

  38. Sung KR, Kim S, Lee Y, Yun SC, Na JH. Retinal nerve fiber layer normative classification by optical coherence tomography for prediction of future visual field loss. Investig Ophthalmol Vis Sci. 2011;52:2634–9. https://doi.org/10.1167/IOVS.10-6246

    Article  Google Scholar 

  39. Sehi M, Zhang X, Greenfield DS, Chung Y, Wollstein G, Francis BA, et al; Advanced Imaging for Glaucoma Study Group. Retinal nerve fiber layer atrophy is associated with visual field loss over time in glaucoma suspect and glaucomatous eyes. Am J Ophthalmol. 2013;155:73–82.e1. https://doi.org/10.1016/j.ajo.2012.07.005

  40. David RCC, Moghimi S, Ekici E, Do JL, Hou H, Proudfoot JA, et al. Rates of retinal nerve fiber layer thinning in distinct glaucomatous optic disc phenotypes in early glaucoma. Am J Ophthalmol. 2021;229:8–17. https://doi.org/10.1016/j.ajo.2021.04.010

  41. Lalezary M, Medeiros FA, Weinreb RN, Bowd C, Sample PA, Tavares IM, et al. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol. 2006;142:576–82. https://doi.org/10.1016/j.ajo.2006.05.004

  42. Enders P, Adler W, Schaub F, Hermann MM, Dietlein T, Cursiefen C, et al. Novel Bruch’s membrane opening minimum rim area equalizes disc size dependency and offers high diagnostic power for glaucoma. Invest Ophthalmol Vis Sci. 2016;57:6596–603. https://doi.org/10.1167/iovs.16-20561

  43. Park DY, Lee EJ, Han JC, Kee C. Applicability of ISNT Rule Using BMO-MRW to Differentiate Between Healthy and Glaucomatous Eyes. J Glaucoma. 2018;27:610–6. https://doi.org/10.1097/IJG.0000000000000970

    Article  PubMed  Google Scholar 

  44. Kabbara SW, Zangwill LM, Mundae R, Hammel N, Bowd C, Medeiros FA, et al. Comparing optical coherence tomography radial and cube scan patterns for measuring Bruch’s membrane opening minimum rim width (BMO-MRW) in glaucoma and healthy eyes: cross-sectional and longitudinal analysis. Br J Ophthalmol. 2018;102:344–51. https://doi.org/10.1136/bjophthalmol-2016-310111

  45. Gmeiner JMD, Schrems WA, Mardin CY, Laemmer R, Kruse FE, Schrems-Hoesl LM. Comparison of Bruch’s Membrane Opening Minimum Rim Width and Peripapillary Retinal Nerve Fiber Layer Thickness in Early Glaucoma Assessment. Investig Ophthalmol Vis Sci. 2016;57:OCT575–OCT584. https://doi.org/10.1167/IOVS.15-18906

    Article  Google Scholar 

  46. Flammer J, Konieczka K, Flammer AJ. The primary vascular dysregulation syndrome: implications for eye diseases. EPMA J. 2013;4:14. https://doi.org/10.1186/1878-5085-4-14

    Article  PubMed  PubMed Central  Google Scholar 

  47. Leske MC. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. https://doi.org/10.1097/ICU.0b013e32831eef82

  48. Graf-Grauwiller T, Stiimpfig D, Flammer J, Words K. Original Paper • Travail original Originalarbeit Do Beta-Blockers Cause Vasospasm? Beta-blockers Timolol Betaxolol Laser-Doppler velocimetry. Ophthalmologica 1993;206:45–50.

    Article  CAS  PubMed  Google Scholar 

  49. Anderson DR, Drance SM, Schulzer M; Collaborative Normal-Tension Glaucoma Study Group. Natural history of normal-tension glaucoma. Ophthalmology. 2001;108:247–53. https://doi.org/10.1016/s0161-6420(00)00518-2

  50. Jonas JB, Papastathopoulos KI. Pressure-dependent changes of the optic disk in primary open-angle glaucoma. Am J Ophthalmol. 1995;119:313–7. https://doi.org/10.1016/S0002-9394(14)71173-0

    Article  CAS  PubMed  Google Scholar 

  51. Anderson DR, Drance SM, Schulzer M. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126:487–97. https://doi.org/10.1016/S0002-9394(98)00223-2

    Article  Google Scholar 

  52. Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S. A randomized trial of brimonidine versus timolol in preserving visual function: Results from the low-pressure glaucoma treatment study. Am J Ophthalmol. 2011;151:671–81. https://doi.org/10.1016/J.AJO.2010.09.026

    Article  CAS  PubMed  Google Scholar 

  53. Hayreh SS, Podhajsky P, Zimmerman MB. Beta-blocker eyedrops and nocturnal arterial hypotension. Am J Ophthalmol. 1999;128:301–9. https://doi.org/10.1016/S0002-9394(99)00160-9

    Article  CAS  PubMed  Google Scholar 

  54. De Moraes CG, Liebmann JM, Greenfield DS, Gardiner SK, Ritch R, Krupin T. Risk factors for visual field progression in the low-pressure glaucoma treatment study. Am J Ophthalmol. 2012;154:702–11. https://doi.org/10.1016/j.ajo.2012.04.015

    Article  PubMed  Google Scholar 

  55. Burgoyne CF, Crawford Downs J, Bellezza AJ, Francis Suh JK, Hart RT. The optic nerve head as a biomechanical structure: A new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retinal Eye Res. 2005;24:39–73. https://doi.org/10.1016/J.PRETEYERES.2004.06.001

    Article  Google Scholar 

  56. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic Nerve Damage in Human Glaucoma: II. The Site of Injury and Susceptibility to Damage. Arch Ophthalmol. 1981;99:635–49. https://doi.org/10.1001/ARCHOPHT.1981.03930010635009

    Article  CAS  PubMed  Google Scholar 

  57. Gharahkhani P, Jorgenson E, Hysi P, Khawaja AP, Pendergrass S, Han X, O, et al. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat Commun. 2021;12:1258. https://doi.org/10.1038/s41467-020-20851-4

  58. Genetics of Glaucoma in People of African Descent (GGLAD) Consortium; Hauser MA, Allingham RR, Aung T, Van Der Heide CJ, Taylor KD, Rotter JI, et al. Association of genetic variants with primary open-angle glaucoma among individuals with african ancestry. JAMA. 2019 Nov 5;322(17):1682–91. https://doi.org/10.1001/jama.2019.16161.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Guo X, Rotter JI. Genome-Wide Association Studies. J Am Med Assoc. 2019;322:1705–6. https://doi.org/10.1001/jama.2019.16479

    Article  Google Scholar 

  60. Osman W, Low SK, Takahashi A, Kubo M, Nakamura Y. A genome-wide association study in the Japanese population confirms 9p21 and 14q23 as susceptibility loci for primary open angle glaucoma. Hum Mol Genet. 2012;21:2836–42. https://doi.org/10.1093/HMG/DDS103

    Article  CAS  PubMed  Google Scholar 

  61. Taylor KD, Guo X, Zangwill LM, Liebmann JM, Girkin CA, Feldman RM, et al. Genetic architecture of primary open-angle glaucoma in individuals of African descent: the African descent and glaucoma evaluation study III. Ophthalmology. 2019;126:38–48. https://doi.org/10.1016/j.ophtha.2018.10.031

Download references

Acknowledgements

The authors thank Fei Yu Ph.D., for his expertize and assistance with statistical analyses.

Funding

Research to Prevent Blindness, New York, NY; The Payden Glaucoma Research Fund; The Simms/Mann Family Foundation. The funding organizations had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study. Conception and design: JC, LG, ADG, DSV; Data collection: LG, EB; Formal analysis and interpretation of data: JC, LG, EM; Methodology: JC, LG, ADG, DSV; Project administration: JC, LG, EB; Supervision: JC, EB; Validation: JC; Writing paper: JC, LG, ADG, EB; Writing—review & editing: JC, LG, ADG, EB, SD, EM.

Corresponding author

Correspondence to Joseph Caprioli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grassi, L., Salazar Vega, D., De Gainza, A. et al. Phenotypic expressions of the optic disc in primary open-angle glaucoma. Eye 37, 3839–3846 (2023). https://doi.org/10.1038/s41433-023-02627-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02627-4

  • Springer Nature Limited

Navigation