Skip to main content
Log in

Microbacterium kunmingensis sp. nov., an attached bacterium of Microcystis aeruginosa

  • Article
  • Published:
The Journal of Antibiotics Submit manuscript

Abstract

A Gram-stain positive, aerobic, rod-shaped actinobacterial strain designated as JXJ CY 27-2T was isolated from the culture of Microcystis aeruginosa FACHB-905 (Maf) collected from Lake Kunming, southwest China. The isolate was catalase positive, oxidase negative, and able to grow at 10.0-44.0 °C, pH 5.0-10.0 and 0–5.0% NaCl. Based on the 16S rRNA gene sequences, JXJ CY 27-2T showed high similarities of 98.54–98.55% with Microbacterium invictum DSM 19600T, Microbacterium saccharophilum DSM 28107T, and Microbacterium aoyamense DSM 19461T, and less than 98.47% similarities with other members of the genus. Its major cellular fatty acids were anteiso-C17:0 and anteiso-C15:0. The predominant menaquinones were MK-11 and MK-12. The diagnostic diamino acid in the cell wall peptidoglycan was lysine. Whole cell sugars contained mannose, ribose, galactose, rhamnose and arabinose. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids, and an unidentified lipid. The DNA G + C content was 69.8%. The digital DNA-DNA hybridization and average nucleotide identity values between strain JXJ CY 27-2T and its three closest similar strains were 18.4–20.3% and 74.9–75.7%, respectively. Based on the above data, strain JXJ CY 27-2T was identified as a new species of the genus Microbacterium, for which the name Microbacterium kunmingensis sp. nov. is proposed. The type strain is JXJ CY 27-2T (=CGMCC 1.17506T = KCTC 49382T). Strain JXJ CY 27-2T could promote the growth of Maf by providing it with available phosphorus, nitrogen and probably other nutrients such as vitamins and indole-3-acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu LP. Characteristics of blue algal bloom in Dianchi Lake and analysis on its cause. Res Environ Sci. 1999;12:36–37.

    Google Scholar 

  2. Liu YM, Chen W, Li DH, Shen YW, Liu YD, Song LR. Analysis of paralytic shellfish toxins in Aphanizomenon DC-1 from Lake Dianchi, China. Environ Toxicol. 2006;21:289–95.

    Article  CAS  PubMed  Google Scholar 

  3. Dziallas C, Grossart HP. Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ Microbiol. 2011;13:1632–41.

    Article  PubMed  Google Scholar 

  4. Parveen B, Ravet V, Djediat C, Mary I, Quiblier C, Debroas D, Humbert JF. Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environ Microbiol Rep. 2013;5:716–24.

    CAS  PubMed  Google Scholar 

  5. Shi LM, Cai YF, Kong FX, Yu Y. Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu, China. Environ Microbiol Rep. 2012;4:669–78.

    CAS  PubMed  Google Scholar 

  6. Kouzuma A, Watanabe K. Exploring the potential of algae/bacteria interactions. Curr Opin Biotech. 2015;33:125–9.

    Article  CAS  PubMed  Google Scholar 

  7. Cooper MB, Smith AG. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol. 2015;26:147–53.

    Article  PubMed  Google Scholar 

  8. Yang L, Xiao L. Outburst, jeopardize and control of cyanobacterial bloom in lakes. Beijing: Science Press; 2011. p. 71–212.

    Google Scholar 

  9. de-Bashan LE, Antoun H, Bashan Y. Involvement of indole-3-acetic-acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol. 2008;44:938–47.

    Article  CAS  PubMed  Google Scholar 

  10. Xiao Y, Wang L, Wang X, Chen M, Chen J, Tian BY, Zhang BH. Nocardioides lacusdianchii sp. nov., an attached bacterium of Microcystis aeruginosa. Antonie van Leeuwenhoek. 2022;115:141–53.

    Article  PubMed  Google Scholar 

  11. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.

    Article  Google Scholar 

  12. Zhang BH, Chen W, Li HQ, Zhou EM, Hu WY, Duan YQ, Mohamad OA, Gao R, Li WJ. An antialgal compound produced by Streptomyces jiujiangensis JXJ 0074T. Appl Microbiol Biotechnol. 2015;99:7673–83.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang BH, Salam N, Cheng J, Xiao M, Li HQ, Yang JY, Zha DM, Li WJ. Citricoccus lacusdiani sp. nov., an actinobacterium promoting Microcystis growth with limited soluble phosphorus. Antonie Van Leeuwenhoek. 2016;109:1457–65.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang BH, Salam N, Cheng J, Li HQ, Yang JY, Zha DM, Guo QG, Li WJ. Microbacterium lacusdiani sp. nov., a phosphate–solubilizing novel actinobacterium isolated from mucilaginous sheath of Microcystis. J Antibiot. 2017;70:147–51.

    Article  Google Scholar 

  15. Smibert RM, Krieg NR. Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR, editors. Methods for general and molecular bacteriology. Washington, DC: American Society for Microbiology; 1994. p. 607–54.

  16. Dong XZ, Cai MY. Manual of systematic identification of common bacteria. Beijing: Science Press; 2001. p. p349–89.

    Google Scholar 

  17. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol. 1979;47:87–95.

    Article  CAS  Google Scholar 

  18. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol. 1983;54:31–36.

    Article  CAS  Google Scholar 

  19. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972;36:407–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol. 2009;59:2025–32.

    Article  CAS  PubMed  Google Scholar 

  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBiocloud: a taxonomically united database of 16S rRNA gene sequences and whole–genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saitou N, Nei M. The neighbor–joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–42.

    CAS  PubMed  Google Scholar 

  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20:406–16.

    Article  Google Scholar 

  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.

    Article  CAS  PubMed  Google Scholar 

  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.

    Article  PubMed  Google Scholar 

  27. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Massouras A, Hens K, Gubelmann C, Uplekar S, Decouttere F, Rougemont J, Cole ST, Deplancke B. Primer-initiated sequence synthesis to detect and assemble structural variants. Nat Methods. 2010;7:485–6.

    Article  CAS  PubMed  Google Scholar 

  30. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinforma. 2007;8:209.

    Article  Google Scholar 

  32. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence–based species delimitation with confidence intervals and improved distance functions. BMC Bioinforma. 2013;14:60.

    Article  Google Scholar 

  33. Xiao Y, Chen J, Chen M, Deng SJ, Xiong ZQ, Tian BY, Zhang BH. Mycolicibacterium lacusdiani sp. nov., an attached bacterium of Microcystis aeruginosa. Front Microbiol. 2022;13:861291.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vaz-Moreira I, Lopes AR, Faria C, Spröer C, Schumann P, Nunes OC, Manaia CM. Microbacterium invictum sp. nov., isolated from homemade compost. Int J Syst Evol Microbiol. 2009;59:2036–41.

    Article  PubMed  Google Scholar 

  35. Ohta Y, Ito T, Mori K, Nishi S, Shimane Y, Mikuni K, Hatada Y. Microbacterium saccharophilum sp. nov., isolated from a sucrose-refining factory. Int J Syst Evol Microbiol. 2013;63:2765–9.

    Article  CAS  PubMed  Google Scholar 

  36. Kageyama A, Takahashi Y, Ōmura S. Microbacterium deminutum sp. nov., Microbacterium pumilum sp. nov. and Microbacterium aoyamense sp. nov. Int J Syst Evol Microbiol. 2006;56:2113–7.

    Article  CAS  PubMed  Google Scholar 

  37. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today. 2006;33:152–5.

    Google Scholar 

  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinforma. 2013;14:60.

    Article  Google Scholar 

  39. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51.

    Article  CAS  PubMed  Google Scholar 

  40. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.

    Article  CAS  PubMed  Google Scholar 

  41. Hoke AK, Reynoso G, Smith MR, Gardner MI, Lockwood DJ, Gilbert NE, Wilhelm SW, Becker IR, Brennan GJ, Crider KE, Farnan SR, Mendoza V, Poole AC, Zimmerman ZP, Utz LK, Wurch LL, Steffen MM. Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS ONE. 2021;16:e0257017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang BH, Salam N, Cheng J, Li HQ, Yang JY, Zha DM, Zhang YQ, Ai MJ, Hozzein WN, Li WJ. Modestobacter lacusdianchii sp. nov., a phosphate-solubilizing actinobacterium with ability to promote Microcystis growth. PLoS ONE. 2016;11:e0161069.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by funds from Natural Science Foundation of China (No. 31060010).

Author information

Authors and Affiliations

Authors

Contributions

BZ designed the experiments; YX, MC, JC, LM, YP and SG performed the experiments; YX, MC and BZ analyzed the data; YX and MC drafted the manuscript and BZ revised the manuscript.

Corresponding author

Correspondence to Bing-Huo Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Chen, M., Chen, J. et al. Microbacterium kunmingensis sp. nov., an attached bacterium of Microcystis aeruginosa. J Antibiot 75, 662–670 (2022). https://doi.org/10.1038/s41429-022-00568-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00568-w

  • Springer Japan KK

This article is cited by

Navigation