Skip to main content
Log in

Studies on Streptomyces sp. SN-593: reveromycin biosynthesis, β-carboline biomediator activating LuxR family regulator, and construction of terpenoid biosynthetic platform

  • Review Article
  • Published:
The Journal of Antibiotics Submit manuscript

This article has been updated

Abstract

Streptomyces represents an important reservoir for biologically active natural products. Understanding the biosynthetic mechanism and the mode of gene expression is important for enhanced metabolite production and evaluation of biological activities. This review provides an overview of biosynthetic studies investigating reveromycin and β-carboline biomediators that enhanced the production of reveromycin in Streptomyces sp. SN-593 through activation of the LuxR family regulator. Furthermore, based on the optimal expression of a pathway specific regulator controlling the mevalonate pathway gene cluster, Streptomyces sp. SN-593 was developed as a platform for terpenoid compounds mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 15 July 2022

    Dedication was added.

References

  1. Clardy J, Walsh C. Lessons from natural molecules. Nature. 2004;432:829–37.

    Article  CAS  PubMed  Google Scholar 

  2. Usui T, Osada H. Biochemical tools for investigating cell function. Bioprobes. Tokyo, Japan: Springer; 2000.

    Google Scholar 

  3. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.

    Article  CAS  PubMed  Google Scholar 

  4. Bérdy J. Bioactive microbial metabolites. J Antibiot. 2005;58:1–26.

    Article  Google Scholar 

  5. Weissman KJ, Leadlay PF. Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol. 2005;3:925–36.

    Article  CAS  PubMed  Google Scholar 

  6. Fischbach MA, Walsh CT. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev. 2006;106:3468–96.

    Article  CAS  PubMed  Google Scholar 

  7. Hertweck C. The biosynthetic logic of polyketide diversity. Angew Chem Int Ed. 2009;48:4688–716.

    Article  CAS  Google Scholar 

  8. Nett M, Ikeda H, Moore BS. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep. 2009;26:1362–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Panthee S, Kito N, Hayashi T, Shimizu T, Ishikawa J, Hamamoto H, et al. β-carboline chemical signals induce reveromycin production through a LuxR family regulator in Streptomyces sp. SN-593. Sci Rep. 2020;10:10230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Osada H, Koshino H, Isono K, Takahashi H, Kawanishi G. Reveromycin A, a new antibiotic which inhibits the mitogenic activity of epidermal growth factor. J Antibiot. 1991;44:259–61.

    Article  CAS  Google Scholar 

  11. Takahashi S, Toyoda A, Sekiyama Y, Takagi H, Nogawa T, Uramoto M, et al. Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation. Nat Chem Biol. 2011;7:461–8.

    Article  CAS  PubMed  Google Scholar 

  12. Woo J-T, Kawatani M, Kato M, Shinki T, Yonezawa T, Kanoh N, et al. Reveromycin A an agent for osteoporosis, inhibits bone resorption by inducing apoptosis specifically in osteoclasts. Proc Natl Acad Sci. 2006;103:4729–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muguruma H, Yano S, Kakiuchi S, Uehara H, Kawatani M, Osada H, et al. Reveromycin A inhibits osteolytic bone metastasis of small-cell lung cancer cells, SBC-5, through an antiosteoclastic activity. Clin Cancer Res. 2005;11:8822–8.

    Article  CAS  PubMed  Google Scholar 

  14. Yano A, Tsutsumi S, Soga S, Lee MJ, Trepel J, Osada H, et al. Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone. Proc Natl Acad Sci. 2008;105:15541–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Osada H. Chemical and biological studies of reveromycin A. J Antibiot. 2016;69:723–30.

    Article  CAS  Google Scholar 

  16. Takahashi S, Nagano S, Nogawa T, Kanoh N, Uramoto M, Kawatani M, et al. Structure-function analyses of cytochrome P450revI involved in reveromycin A biosynthesis and evaluation of the biological activity of its substrate reveromycin T. J Biol Chem. 2014;289:32446–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nogawa T, Takahashi S, Sekiyama Y, Takagi H, Uramoto M, Koshino H, et al. Creation of novel reveromycin derivatives by alcohol-added fermentation. J Antibiot. 2013;66:247–50.

    Article  CAS  Google Scholar 

  18. Miyazawa T, Takahashi S, Kawata A, Panthee S, Hayashi T, Shimizu T, et al. Identification of middle chain fatty acyl-CoA ligase responsible for the biosynthesis of 2-alkylmalonyl-CoAs for polyketide extender unit. J Biol Chem. 2015;290:26994–7011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Panthee S, Takahashi S, Hayashi T, Shimizu T, Osada H. β-carboline biomediators induce reveromycin production in Streptomyces sp. SN-593. Sci Rep. 2019;9:5802.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Panthee S, Takahashi S, Takagi H, Nogawa T, Oowada E, Uramoto M, et al. Furaquinocins I and J: novel polyketide isoprenoid hybrid compounds from Streptomyces reveromyceticus SN-593. J Antibiot. 2011;64:509–13.

    Article  CAS  Google Scholar 

  21. Khalid A, Takagi H, Panthee S, Muroi M, Chappell J, Osada H, et al. Development of a terpenoid-production platform in Streptomyces reveromyceticus SN-593. ACS Synth Biol. 2017;6:2339–49.

    Article  CAS  PubMed  Google Scholar 

  22. Agtarap A, Chamberlin JW, Pinkerton M, Steinrauf LK. Structure of monensic acid, a new biologically active compound. J Am Chem Soc. 1967;89:5737–9.

    Article  CAS  PubMed  Google Scholar 

  23. Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, et al. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother. 1979;15:361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. MacKintosh C, Klumpp S. Tautomycin from the bacterium Streptomyces verticillatus. FEBS Lett. 1990;277:137–40.

    Article  CAS  PubMed  Google Scholar 

  25. Ishihara H, Martin BL, Brautigan DL, Karaki H, Ozaki H, Kato Y, et al. Calyculin A and okadaic acid: Inhibitors of protein phosphatase activity. Biochem Biophys Res Commun. 1989;159:871–7.

    Article  CAS  PubMed  Google Scholar 

  26. Bialojan C, Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Biochem J. 1988;256:283–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Höltzel A, Kempter C, Metzger JW, Jung G. Spirofungin, a new antifungal antibiotic from Streptomyces violaceusniger Tü 4113. J Antibiot. 1998;51:699–707.

    Article  Google Scholar 

  28. Niggemann J, Bedorf N, Flörke U, Steinmetz H, Gerth K, Reichenbach H, et al. Spirangien A and B, highly cytotoxic and antifungal spiroketals from the Myxobacterium Sorangium cellulosum: Isolation, structure elucidation and chemical modifications. Eur J Org Chem. 2005;2005:5013–8.

    Article  Google Scholar 

  29. Shimizu T, Masuda T, Hiramoto K, Nakata T. Total synthesis of reveromycin A. Org Lett. 2000;2:2153–6.

    Article  CAS  PubMed  Google Scholar 

  30. Paterson I, Findlay AD, Noti C. Total synthesis of (−)-spirangien A, an antimitotic polyketide isolated from the Myxobacterium Sorangium Cellulosum. Chem Asian J. 2009;4:594–611.

    Article  CAS  PubMed  Google Scholar 

  31. Sheppeck JE, Liu W, Chamberlin AR. Total synthesis of the serine/threonine-specific protein phosphatase inhibitor tautomycin 1. J Org Chem. 1997;62:387–98.

    Article  CAS  PubMed  Google Scholar 

  32. Oliynyk M, Stark CBW, Bhatt A, Jones MA, Hughes-Thomas ZA, Wilkinson C, et al. Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Mol Microbiol. 2003;49:1179–90.

    Article  CAS  PubMed  Google Scholar 

  33. Bhatt A, Stark CBW, Harvey BM, Gallimore AR, Demydchuk YA, Spencer JB, et al. Accumulation of an E,E,E-triene by the monensin-producing polyketide synthase when oxidative cyclization is blocked. Angew Chem Int Ed. 2005;44:7075–8.

    Article  CAS  Google Scholar 

  34. Gallimore AR, Stark CB, Bhatt A, Harvey BM, Demydchuk Y, Bolanos-Garcia V, et al. Evidence for the role of the monB genes in polyether ring formation during monensin biosynthesis. Chem Biol. 2006;13:453–60.

    Article  CAS  PubMed  Google Scholar 

  35. Li W, Ju J, Rajski SR, Osada H, Shen B. Characterization of the tautomycin biosynthetic gene cluster from Streptomyces spiroverticillatus unveiling new insights into dialkylmaleic anhydride and polyketide biosynthesis. J Biol Chem. 2008;283:28607–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ikeda H, Nonomiya T, Usami M, Ohta T, Ōmura S. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci. 1999;96:9509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frank B, Knauber J, Steinmetz H, Scharfe M, Blöcker H, Beyer S, et al. Spiroketal polyketide formation in Sorangium: identification and analysis of the biosynthetic gene cluster for the highly cytotoxic spirangienes. Chem Biol. 2007;14:221–33.

    Article  CAS  PubMed  Google Scholar 

  38. Sun P, Zhao Q, Yu F, Zhang H, Wu Z, Wang Y, et al. Spiroketal formation and modification in avermectin biosynthesis involves a dual activity of AveC. J Am Chem Soc. 2013;135:1540–8.

    Article  CAS  PubMed  Google Scholar 

  39. Guengerich FP. Cytochrome p450 enzymes in the generation of commercial products. Nat Rev Drug Disco. 2002;1:359–66.

    Article  CAS  Google Scholar 

  40. Shimizu T, Hiramoto K, Nakata T Succinylation of tertiary alcohols under high pressure. Synthesis. 2004;2001.

  41. Shimizu T, Usui T, Machida K, Furuya K, Osada H, Nakata T. Chemical modification of reveromycin A and its biological activities. Bioorg Med Chem Lett. 2002;12:3363–6.

    Article  CAS  PubMed  Google Scholar 

  42. Shimizu T, Usui T, Fujikura M, Kawatani M, Satoh T, Machida K, et al. Synthesis and biological activities of reveromycin A and spirofungin A derivatives. Bioorg Med Chem Lett. 2008;18:3756–60.

    Article  CAS  PubMed  Google Scholar 

  43. Miyamoto Y, Machida K, Mizunuma M, Emoto Y, Sato N, Miyahara K, et al. Identification of Saccharomyces cerevisiae isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor reveromycin A. J Biol Chem. 2002;277:28810–4.

    Article  CAS  PubMed  Google Scholar 

  44. Bassler BL, Losick R. Bacterially speaking. Cell. 2006;125:237–46.

    Article  CAS  PubMed  Google Scholar 

  45. Ohnishi Y, Kameyama S, Onaka H, Horinouchi S. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol. 1999;34:102–11.

    Article  CAS  PubMed  Google Scholar 

  46. Hara O, Beppu T. Mutants blocked in streptomycin production in Streptomyces griseus - the role of A-factor. J Antibiot. 1982;35:349–58.

    Article  CAS  Google Scholar 

  47. Horinouchi S, Beppu T. A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus. Mol Microbiol. 1994;12:859–64.

    Article  CAS  PubMed  Google Scholar 

  48. Horinouchi S, Beppu T. Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Proc Jpn Acad Ser B. 2007;83:277–95.

    Article  CAS  Google Scholar 

  49. Yamada Y, Sugamura K, Kondo K, Yanagimoto M, Okada H. The structure of inducing factors for virginiamycin production in Streptomyces virginiae. J Antibiot. 1987;40:496–504.

    Article  CAS  Google Scholar 

  50. Takano E, Nihira T, Hara Y, Jones JJ, Gershater CJL, Yamada Y, et al. Purification and structural determination of SCB1, a γ-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J Biol Chem. 2000;275:11010–6.

    Article  CAS  PubMed  Google Scholar 

  51. Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T, et al. A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol. 2005;56:465–79.

    Article  CAS  PubMed  Google Scholar 

  52. Arakawa K, Tsuda N, Taniguchi A, Kinashi H. The butenolide signaling molecules SRB1 and SRB2 induce lankacidin and lankamycin production in Streptomyces rochei. ChemBioChem. 2012;13:1447–57.

    Article  CAS  PubMed  Google Scholar 

  53. Corre C, Song L, O’Rourke S, Chater KF, Challis GL. 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci. 2008;105:17510–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Recio E, Colinas Á, Rumbero Á, Aparicio JF, Martín JF. PI Factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J Biol Chem. 2004;279:41586–93.

    Article  CAS  PubMed  Google Scholar 

  55. Sato K, Nihira T, Sakuda S, Yanagimoto M, Yamada Y. Isolation and structure of a new butyrolactone autoregulator from Streptomyces sp. FRI-5. J Ferment Bioeng. 1989;68:170–3.

    Article  CAS  Google Scholar 

  56. Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H, Nishitomi K, et al. Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc Natl Acad Sci. 2011;108:16410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Andres N, Wolf H, Zähner H. Hormaomycin, a new peptide lactone antibiotic effective in inducing cytodifferentiation and antibiotic biosynthesis in some Streptomyces species. Z für Naturforsch C. 1990;45:851–5.

    Article  CAS  Google Scholar 

  58. Onaka H, Tabata H, Igarashi Y, Sato Y, Furumai T. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in Streptomycetes. I. Purification and characterization. J Antibiot. 2001;54:1036–44.

    Article  CAS  Google Scholar 

  59. Amano S, Morota T, Kano YK, Narita H, Hashidzume T, Yamamoto S, et al. Promomycin, a polyether promoting antibiotic production in Streptomyces spp. J Antibiot. 2010;63:486–91.

    Article  CAS  Google Scholar 

  60. Yamanaka K, Oikawa H, Ogawa HO, Hosono K, Shinmachi F, Takano H, et al. Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology. 2005;151:2899–905.

    Article  CAS  PubMed  Google Scholar 

  61. Craney A, Ozimok C, Pimentel-Elardo SM, Capretta A, Nodwell JR. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem Biol. 2012;19:1020–7.

    Article  CAS  PubMed  Google Scholar 

  62. Kato N, Takahashi S, Nogawa T, Saito T, Osada H. Construction of a microbial natural product library for chemical biology studies. Curr Opin Chem Biol. 2012;16:101–8.

    Article  CAS  PubMed  Google Scholar 

  63. Kawatani M, Okumura H, Honda K, Kanoh N, Muroi M, Dohmae N, et al. The identification of an osteoclastogenesis inhibitor through the inhibition of glyoxalase I. Proc Natl Acad Sci. 2008;105:11691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kanoh N, Honda K, Simizu S, Muroi M, Osada H. Photo-cross-linked small-molecule affinity matrix for facilitating forward and reverse chemical genetics. Angew Chem Int Ed. 2005;44:3559–62.

    Article  CAS  Google Scholar 

  65. Lechner A, Eustáquio AS, Gulder TAM, Hafner M, Moore BS. Selective overproduction of the proteasome inhibitor salinosporamide A via precursor pathway regulation. Chem Biol. 2011;18:1527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De Schrijver A, De Mot R. A subfamily of MalT-related ATP-dependent regulators in the LuxR family. Microbiology. 1999;145:1287–8.

    Article  PubMed  Google Scholar 

  67. Zhang L, Hashimoto T, Qin B, Hashimoto J, Kozone I, Kawahara T, et al. Characterization of giant modular PKSs provides insight into genetic mechanism for structural diversification of aminopolyol polyketides. Angew Chem Int Ed. 2017;56:1740–5.

    Article  CAS  Google Scholar 

  68. Takagi M, Kuzuyama T, Takahashi S, Seto H. A gene cluster for the mevalonate pathway from Streptomyces sp. Strain CL190. J Bacteriol. 2000;182:4153–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takahashi S, Kuzuyama T, Seto H. Purification, characterization, and cloning of a eubacterial 3-hydroxy-3-methylglutaryl coenzyme A reductase, a key enzyme involved in biosynthesis of terpenoids. J Bacteriol. 1999;181:1256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003;21:796–802.

    Article  CAS  PubMed  Google Scholar 

  71. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006;440:940–3.

    Article  CAS  PubMed  Google Scholar 

  72. Takahashi S, Yeo Y, Greenhagen BT, McMullin T, Song L, Maurina-Brunker J, et al. Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng. 2007;97:170–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yamada Y, Kuzuyama T, Komatsu M, Shin-Ya K, Omura S, Cane DE, et al. Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci. 2015;112:857–62.

    Article  CAS  PubMed  Google Scholar 

  74. Hillen LW, Pollard G, Wake LV, White N. Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng. 1982;24:193–205.

    Article  CAS  PubMed  Google Scholar 

  75. Hamano Y, Dairi T, Yamamoto M, Kuzuyama T, Itoh N, Seto H. Growth-phase dependent expression of the mevalonate pathway in a terpenoid antibiotic-producing Streptomyces strain. Biosci Biotechnol Biochem. 2002;66:808–19.

    Article  CAS  PubMed  Google Scholar 

  76. Tarshis LC, Proteau PJ, Kellogg BA, Sacchettini JC, Poulter CD. Regulation of product chain length by isoprenyl diphosphate synthases. Proc Natl Acad Sci. 1996;93:15018–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Niehaus TD, Okada S, Devarenne TP, Watt DS, Sviripa V, Chappell J. Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc Natl Acad Sci. 2011;108:12260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Niehaus TD, Kinison S, Okada S, Yeo YS, Bell SA, Cui P, et al. Functional identification of triterpene methyltransferases from Botryococcus braunii race B. J Biol Chem. 2012;287:8163–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhuang X, Chappell J. Building terpene production platforms in yeast. Biotechnol Bioeng. 2015;112:1854–64.

    Article  CAS  PubMed  Google Scholar 

  80. Ghimire GP, Lee HC, Sohng JK. Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl Environ Microbiol. 2009;75:7291–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fontana A, Kelly MT, Prasad JD, Andersen RJ. Evidence for the biosynthesis of squalene via the methylerythritol phosphate pathway in a Streptomyces sp. obtained from a marine sediment. J Org Chem. 2001;66:6202–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Regarding winning Omura Award 2021 from Society for Actinomycetes Japan, I appreciate Hiroyuki Osada (RIKEN), Haruo Ikeda (Kitasato University), Jun Ishikawa (NIID), Atsushi Toyoda (NIG), Masakazu Uramoto (RIKEN), Tohru Dairi (Hokkaido University), Yasuyo Sekiyama (RIKEN), Hiroyuki Koshino (RIKEN), Shingo Nagano (Tottori University), Toshihiko Nogawa (RIKEN), Joe Chappell (University of Kentucky), Shigeru Okada (University of Tokyo), and many of whom I could not list here. The research was supported by JSPS KAKENHI grant (18580085, 21580104, 24380052, 24658088, 25108726, 16H04905 17H05455, 19H04666, 20H00416), JSBBA Innovative Research Program Award, and Nagase Foundation Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunji Takahashi.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedication: The discovery of reveromycin was accomplished in Dr. lsono’s laboratory. I mourn his passing and dedicate this review to him.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, S. Studies on Streptomyces sp. SN-593: reveromycin biosynthesis, β-carboline biomediator activating LuxR family regulator, and construction of terpenoid biosynthetic platform. J Antibiot 75, 432–444 (2022). https://doi.org/10.1038/s41429-022-00539-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00539-1

  • Springer Japan KK

Navigation