Skip to main content

Advertisement

Log in

Non-antifungal drugs inhibit growth, morphogenesis and biofilm formation in Candida albicans

  • Article
  • Published:
The Journal of Antibiotics Submit manuscript

Abstract

The increased resistance/tolerance of Candida infections to antimicrobial treatment can be attributed to biofilm-associated cells. A way to overcome this situation is to re-purpose non-anti-fungal drugs that could be active against fungi. We have explored the potential of a small library of eighteen non-antifungal drugs used in different human diseases. Candida albicans was cultured in the presence and absence of different concentrations of these drugs. Subsequently, inhibition of growth, germ tube formation, adhesion, and biofilm development were studied. Out of eighteen drug molecules, six showed a reduction in planktonic and biofilm growth in a dose-dependent manner and three drugs inhibited germ tube formation. This study shows the potential of non-antifungal drugs for the development of new anti-Candida agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hasan F, Xess I, Wang X, Jain N, Fries BC. Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect. 2009;11:753–61.

    Article  CAS  Google Scholar 

  2. Fidel P Jr. Candida-host interactions in HIV disease: relationships in oropharyngeal candidiasis. Adv Dent Res. 2006;19:80–4.

    Article  Google Scholar 

  3. Kuhn DM, Ghannoum MA. Candida biofilms: antifungal resistance and emerging therapeutic options. Curr Opin investigational Drugs. 2004;5:186–97.

    CAS  PubMed  Google Scholar 

  4. Kowalski SL, Kemp CK. Evolving threat of candida resistance. Home Healthc now. 2018;36:332–3.

    Article  Google Scholar 

  5. Krishnasamy L, Krishnakumar S, Kumaramanickavel G, Saikumar C. Molecular mechanisms of antifungal drug resistance in candida species. J Clin Diagn Res. 2018;12:DE01–6.

    CAS  Google Scholar 

  6. Swoboda S, Lichtenstern C, Ober MC, Taylor LA, Störzinger D, Michel A, et al. Implementation of practice guidelines for antifungal therapy in a surgical intensive care unit and its impact on use and costs. Chemotherapy. 2009;55:418–24.

    Article  CAS  Google Scholar 

  7. Nosanchuk JD. Current status and future of antifungal therapy for systemic mycoses. Recent Pat Antiinfective Drug Discov. 2006;1:75–84.

    CAS  Google Scholar 

  8. Robbins N, Caplan T, Cowen LE. Molecular evolution of antifungal drug resistance. Annu Rev Microbiol. 2017;71:753–75.

    Article  CAS  Google Scholar 

  9. Odds FC. Antifungal agents: their diversity and increasing sophistication. Mycologist. 2003;17:51–5.

    Article  Google Scholar 

  10. Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, et al. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev. 2009;22:291–321.

    Article  CAS  Google Scholar 

  11. Revie NM, Iyer KR, Robbins N, Cowen LE. Antifungal drug resistance: evolution, mechanisms and impact. Curr Opin Microbiol. 2018;45:70–6.

    Article  CAS  Google Scholar 

  12. Sanglard D. Finding the needle in a haystack: mapping antifungal drug resistance in fungal pathogen by genomic approaches. PLoS Pathog. 2019;15:e1007478.

    Article  Google Scholar 

  13. Ingham CJ, Boonstra S, Levels S, De Lange M, Meis JF, Schneeberger PM. Rapid susceptibility testing and microcolony analysis of Candida spp. cultured and imaged on porous aluminum oxide. PLoS ONE. 2012;7:e33818.

    Article  CAS  Google Scholar 

  14. Spitzer M, Griffiths E, Blakely KM, Wildenhain J, Ejim L, Rossi L, et al. Cross‐species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Mol Syst Biol. 2011;7:499.

    Article  CAS  Google Scholar 

  15. Ji C, Liu N, Tu J, Li Z, Han G, Li J, et al. Drug repurposing of haloperidol: discovery of new benzocyclane derivatives as potent antifungal agents against cryptococcosis and candidiasis. ACS Infect Dis. 2019;6:768–86.

    Article  Google Scholar 

  16. Wall G, Chaturvedi AK, Wormley FL, Wiederhold NP, Patterson HP, Patterson TF, et al. Screening a repurposing library for inhibitors of multidrug-resistant Candida auris identifies ebselen as a repositionable candidate for antifungal drug development. Antimicrobial Agents Chemother. 2018;62:e01084-18.

    Article  Google Scholar 

  17. Judd WR, Martin CA. Antifungal activity of nontraditional antifungal agents. Curr Fungal Infect Rep. 2009;3:86–95.

    Article  Google Scholar 

  18. Richter SS, Galask RP, Messer SA, Hollis RJ, Diekema DJ, Pfaller MA. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. J Clin Microbiol. 2005;43:2155–62.

    Article  CAS  Google Scholar 

  19. Kathwate GH, Shinde RB, Karuppayil SM. Antiepileptic drugs inhibit growth, dimorphism, and biofilm mode of growth in human pathogen Candida albicans. Assay Drug Dev Technol. 2015;13:307–12.

    Article  CAS  Google Scholar 

  20. Ramage G, Walle KV, Wickes BL, López-Ribot JL. Standardized method for in vitro antifungal susceptibility testing of Candida albicansbiofilms. Antimicrobial Agents Chemother. 2001;45:2475–9.

    Article  CAS  Google Scholar 

  21. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogenCandida albicans: development, architecture, and drug resistance. J J Bacteriol. 2001;183:5385–94.

    Article  CAS  Google Scholar 

  22. Chauhan NM, Raut JS, Karuppayil SM. A morphogenetic regulatory role for ethyl alcohol in Candida albicans. Mycoses. 2011;54:e697–e703.

    Article  Google Scholar 

  23. Hudson DA, Sciascia QL, Sanders RJ, Norris GE, Edwards PJ, Sullivan PA, et al. Identification of the dialysable serum inducer of germ-tube formation in Candida albicans. Microbiology. 2004;150:3041–9.

    Article  CAS  Google Scholar 

  24. Wood N, Nugent K. Inhibitory effects of chlorpromazine on Candida species. Antimicrobial Agents. Chemotherapy. 1985;27:692–4.

    CAS  Google Scholar 

  25. Sharma S, Kaur H, Khuller G. Cell cycle effects of the phenothiazines: trifluoperazine and chlorpromazine in Candida albicans. FEMS Microbiol Lett. 2001;199:185–90.

    Article  CAS  Google Scholar 

  26. Cooke CE, Mehra IV. Oral ondansetron for preventing nausea and vomiting. Am J Health-Syst Pharm. 1994;51:762–71.

    Article  CAS  Google Scholar 

  27. Ye JH, Ponnudurai R, Schaefer R. Ondansetron: a selective 5‐HT3 receptor antagonist and its applications in CNS‐related disorders. CNS Drug Rev. 2001;7:199–213.

    Article  CAS  Google Scholar 

  28. Versele M, Lemaire K, Thevelein JM. Sex and sugar in yeast: two distinct GPCR systems. EMBO Rep. 2001;2:574–9.

    Article  CAS  Google Scholar 

  29. Lin C-H, Choi A, Bennett RJ. Defining pheromone-receptor signaling in Candida albicans and related asexual Candida species. Mol Biol Cell. 2011;22:4918–30.

    Article  CAS  Google Scholar 

  30. Bölker M. Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol. 1998;25:143–56.

    Article  Google Scholar 

  31. Maidan MM, De Rop L, Serneels J, Exler S, Rupp S, Tournu H, et al. The G protein-coupled receptor Gpr1 and the Gα protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol Biol Cell. 2005;16:1971–86.

    Article  CAS  Google Scholar 

  32. Berdicevsky I, Silbermann M. Effect of glucocorticoid hormones on calcium uptake and the morphology of Candida albicans. Cell Biol Int Rep. 1982;6:783–90.

    Article  CAS  Google Scholar 

  33. Blasko G. Pharmacology, mechanism of action and clinical significance of a convenient antispasmodic agent: drotaverine. J Am Med Assoc India. 1998;1:63–9.

    Google Scholar 

  34. Jung WH, Stateva LI. The cAMP phosphodiesterase encoded by CaPDE2 is required for hyphal development in Candida albicans. Microbiology. 2003;149:2961–76.

    Article  CAS  Google Scholar 

  35. Jung WH, Warn P, Ragni E, Popolo L, Nunn CD, Turner MP, et al. Deletion of PDE2, the gene encoding the high‐affinity cAMP phosphodiesterase, results in changes of the cell wall and membrane in Candida albicans. Yeast. 2005;22:285–94.

    Article  CAS  Google Scholar 

  36. Yost CS. A new look at the respiratory stimulant doxapram. CNS Drug Rev. 2006;12:236–49.

    Article  CAS  Google Scholar 

  37. Hänel H, Kirsch R, Schmidts HL, Kottmann H. New systematically active antimycotics from the beta‐blocker category: Neue, systemisch wirksame Antimykotika aus der Klasse der β‐Blocker. Mycoses. 1995;38:251–64.

    Article  Google Scholar 

  38. da Silveira Derengowski L, Pereira AL, Andrade AC, Kyaw CM, Silva-Pereira I. Propranolol inhibits Candida albicans adherence and biofilm formation on biotic and abiotic surfaces. Int J Antimicrobial Agents. 2009;34:614–6.

    Article  Google Scholar 

  39. Ma B, Huang H-h, Chen X-y, Sun Y-m, Lin L-h, Zhong D-f. Biotransformation of metoprolol by the fungus Cunninghamella blakesleeana. Acta Pharmacologica Sin. 2007;28:1067–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gunderao Hanumantrao Kathwate or S. Mohan Karuppayil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathwate, G.H., Shinde, R.B. & Mohan Karuppayil, S. Non-antifungal drugs inhibit growth, morphogenesis and biofilm formation in Candida albicans. J Antibiot 74, 346–353 (2021). https://doi.org/10.1038/s41429-020-00403-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-00403-0

  • Springer Japan KK

Navigation