Skip to main content
Log in

Morphological characterization of the novel fine structure of the PMMA/PVDF blend

  • Original Article
  • Published:
Polymer Journal Submit manuscript

Abstract

Poly(methyl methacrylate) (PMMA)/Poly(vinylidene fluoride) (PVDF) blends are well known as polymer pairs with unique and complex properties. Using low voltage scanning transmission electron microscopy (LV-STEM), we found that there were previously unseen nanoscale structures inside them. The heterogeneous structures in the blends were formed on the same scale that did not deviate from the size of a single molecular chain, regardless of the solution casting, melt mixing, mixing ratios, and even amorphous or crystalline state of PVDF. The characteristics of these structures were discussed in accordance with thermophysical properties and intermolecular interaction properties, which provides the following new findings for the first time. First, the mixing ratio-dependent melting point depression exhibited by PMMA/PVDF blends is due to the size of their interface region. Second, the complex thermophysical behavior of the solution-casting blends is caused by the presence of ultrafine PVDF crystals. Finally, LV-STEM visualized the molecular miscibility of PMMA and PVDF in the melt-mixing samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Daimon K, Ninomiya M. EA-Eco toner. Fuji Xerox Technical Reports. 2011.

  2. Noland JS, Hsu NN-C, Saxon R, Schmitt JM. Compatible high polymers; poly (vinylidene fluoride) blends with homopolymers of methyl and ethyl methacrylate. Multicompon Polym Syst. 1971. https://doi.org/10.1021/ba-1971-0099.ch002

  3. Nishi T, Wang TT. Melting point depression and kinetic effects of cooling on crystallization in poly (viny1idene fluoride)-poly (methyl methacrylate) mixtures. Macromolecules. 1975. https://doi.org/10.1021/ma60048a040

  4. Aid S, Eddhahak A, Khelladi S, Ortega Z, Chaabani S, Tcharkhtchi A. On the miscibility of PVDF/PMMA polymer blends: thermodynamics, experimental and numerical investigations. Polym Test. 2019. https://doi.org/10.1016/j.polymertesting.2018.11.036

  5. Shi Z, Ma X, Zhao G, Wang G, Zhang L, Li B. Fabrication of high porosity nanocellular polymer foams based on PMMA/PVDF blends. Mater Des. 2020. https://doi.org/10.1016/j.matdes.2020.109002

  6. Sasaki H, Bala PK, Yoshida H, Ito E. Miscibility of PVDF/PMMA blends examined by crystallization dynamics. Polymer. 1995. https://doi.org/10.1016/0032-3861(95)99296-7

  7. Yoshida H. Structure formation of PVDF/PMMA blends studied. J Therm Anal. 1997. https://doi.org/10.1007/BF01987426

  8. Horibe H, Hosokawa Y, Oshiro H, Sasaki Y, Takahashi S, Kono A, et al. Effect of heat-treatment temperature after polymer melt and blending ratio on the crystalline structure of PVDF in a PVDF/PMMA blend. Polym J. 2013. https://doi.org/10.1038/pj.2013.53

  9. Kwei TK, Patterson GD, Wang TT. Compatibility in mixtures of poly (vinylidene fluoride) and poly (ethyl methacrylate). Macromolecules. 1976. https://doi.org/10.1021/ma60053a018

  10. Wang TT, Nishi T. Spherulitic Crystallization in Compatible Blends of Poly (vinylidene fluoride) and Poly (methyl methacrylate). Macromolecules. 1977. https://doi.org/10.1021/ma60056a034

  11. Roerdink E, Challa G. Influence of tacticity of poly (methyl methacrylate) on the compatibility with poly (vinylidene fluoride). Polymer. 1978. https://doi.org/10.1016/0032-3861(78)90034-4

  12. Morra BS, Stein RS. Morphological studies of poly(vinylidene fluoride) and its blends with poly(methyl methacrylate). J Polym Sci: Polym Phys Edition. 1982. https://doi.org/10.1002/pol.1982.180201208

  13. Okabe Y, Murakami H, Osaka N, Saito H, Inoue T. Morphology development and exclusion of noncrystalline polymer during crystallization in PVDF/PMMA blends. Polymer. 2010. https://doi.org/10.1016/j.polymer.2010.01.055

  14. Hirata Y, Kotaka T. Phase separation and viscoelastic behavior of semicompatible polymer blends: poly (vinylidene fluoride)/poly (methyl methacrylate) system. Polym J. 1981. https://doi.org/10.1295/polymj.13.273

  15. Zhang Y, Zuo M, Song Y, Yan X, Zheng Q. Dynamic rheology and dielectric relaxation of poly (vinylidene fluoride)/poly (methyl methacrylate) blends. Compos Sci Technol. 2015. https://doi.org/10.1016/j.compscitech.2014.10.024

  16. Douglass DC, McBrierty VJ. Compatibility in PVF2/PMMA and PVF2/PEMA blends as studies by pulsed NMR. Macromolecules. 1978. https://doi.org/10.1021/ma60064a030

  17. Papavoine CHM, Maas WEJR, Veeman WS, Buning GHW, Vankan JMJ. Triple-resonance proton-fluorine-19-carbon-13 CPMAS NMR study on the crystallization behavior of the PMMA/poly(vinylidene fluoride) 60/40 blend. Macromolecules. 1993. https://doi.org/10.1021/ma00076a0o46

  18. Léonard C, Halary JL, Monnerie L. Hydrogen bonding in PMMA-fluorinated polymer blends: FTi.r. investigations using ester model molecules. Polymer. 1985. https://doi.org/10.1016/0032-3861(85)90084-9

  19. Coleman MM, Painter PC. Hydrogen bonded polymer blends, Prog Polym Sci. 1995.https://doi.org/10.1016/0079-6700(94)00038-4

  20. Gregorio R Jr, Borges DS. Effect of crystallization rate on the formation of the polymorphs of solution cast poly (vinylidene fluoride). Polymer. 2008. https://doi.org/10.1016/j.polymer.2008.07.010

  21. Hahn B, Wendorff J, Yoon DY. Dielectric relaxation of the crystal-amorphous interphase in poly (vinylidene fluoride) and its blends with poly (methyl methacrylate). Macromolecules. 1985. https://doi.org/10.1021/ma00146a024

  22. Hahn BR, Herrmann-Schönherr O, Wendorff JH. Evidence for a crystal-amorphous interphase in PVDF and PVDF/PMMA blends. Polymer. 1987. https://doi.org/10.1016/0032-3861(87)90404-6

  23. Ma W, Zhang J, Wang X, Wang S. Effect of PMMA on crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate) blend prepared in semi-dilute solutions. Appl Surf Sci. 2007. https://doi.org/10.1016/j.apsusc.2007.04.001

  24. Libera MR, Egerton RF. Advances in the transmission electron microscopy of polymers. Polym Microsc. 2010. https://doi.org/10.1080/15583724.2010.493256

  25. Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Nat Bur Stand Sect A. 1962:66A;13–28.

  26. Neidhöfer M, Beaume F, Ibos L, Bernès A, Lacabanne C. Structural evolution of PVDF during storage or annealing, Polymer. 2004. https://doi.org/10.1016/j.polymer.2003.12.066

  27. Jo WH, Lee MR, Min BG, Lee MS. Miscibility of poly(ether imide)/poly(ethylene terephthalate). Polym Bull. 1994. https://doi.org/10.1007/BF00313482

  28. Qiu Z, Yan C, Lu J, Yang W, Ikehara T, Nishi T. Various crystalline morphology of poly(butylene succinate-co-butylene adipate) in its miscible blends with poly(vinylidene fluoride). J Phys Chem. 2007. https://doi.org/10.1021/jp067606f

  29. Wiranidchapong C, Rades T, Kulvanich P, Tucker IG. Method of preparation does not affect the miscibility between steroid hormone and polymethacrylate. Thermochim Acta. 2009. https://doi.org/10.1016/j.tca.2008.12.013

  30. Chenyang X, Mengmeng Z, Liping Z, Jichun Y, Xiaojun C, Yongjin L. Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym Chem. 2013. https://doi.org/10.1039/C3PY00466J

  31. Leonard C, Halary JL, Monnerie L, Micheron F. DSC studies on the transitions in poly (vinylidene fluoride) and some related copolymers. Polym Bull. 1984. https://doi.org/10.1007/BF00258030

  32. Merlini C, Barra GMO, Araujo TM, Pegoretti A. Electrically pressure sensitive poly(vinylidene fluoride)/polypyrrole electrospun mats. RSC Adv. 2014. https://doi.org/10.1039/C4RA01058B

  33. Loufakis K, Wunderlich B. Thermal analysis of the conformational disorder in semicrystalline poly (vinylidene fluoride) and poly(trifluoroethylene). Macromolecules. 1987. https://doi.org/10.1021/ma00176a026

  34. Teyssedre G, Bernes A, Lacabanne C. Influence of the crystalline phase on the molecular mobility of PVDF. J Polym Sci: Part B Polym Phys. 1993. https://doi.org/10.1002/polb.1993.090311316

  35. Nabata Y. Molecular motion in form II poly (vinylidene fluoride). Jpn J Appl Phys. 1990. https://doi.org/10.1143/JJAP.29.2782

  36. Yasuniwa M, Satou T. Multiple melting behavior of poly(butylene succinate). I. Thermal analysis of melt-crystallized samples. J Polym Sci: Part B Polym Phys. 2002. https://doi.org/10.1002/polb.10298

  37. Qiu Z, Komura M, Ikehara T, Nishi T. DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer. 2003. https://doi.org/10.1016/j.polymer.2003.10.045

  38. Nakagawa K, Ishida Y. Dielectric relaxation and molecular motions in polyvinylidene fluoride with crystal form II. J Polym Sci: Part B Polym Phys Ed. 1973. https://doi.org/10.1002/pol.1973.180110804

  39. Bystrov VS, Paramonova EV, Bdikin IK, Bystrova AV, Pullar RC, Kholkin AL. Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly (vinylidene fluoride) (PVDF). J Mol Model. 2013. https://doi.org/10.1007/s00894-013-1891-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Nakajima.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naruke, A., Liang, X., Nakajima, K. et al. Morphological characterization of the novel fine structure of the PMMA/PVDF blend. Polym J 54, 783–792 (2022). https://doi.org/10.1038/s41428-022-00625-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00625-z

  • Springer Nature Limited

This article is cited by

Navigation