Skip to main content
Log in

Anisotropic rotational dynamics of rod-like low-mass molecules in polycarbonate

  • Original Article
  • Published:
Polymer Journal Submit manuscript

Abstract

Comparison of the dielectric relaxation (DR) behaviors of two polar rod-like low-mass molecules (LMs), cyanobiphenyl (CB) and 5-phenyl-2,3′-bipyridine (PBP), in antiplasticized polycarbonate (PC) revealed that rotations around the short and long axes of the LMs appeared from 60 to 125 °C (β region) and from −150 to −50 °C (γ region), respectively. The cooperativity between the local dynamics in PC, measured by dynamic mechanical analysis, and the rotation of the LMs around the short axis was examined based on the relaxation times and activation energies for the LMs (CB and PBP) and PC. The dynamic cooperativity involved the antiplasticization of PC. In contrast, the rotation of the LM (PBP) around its long axis was independent of the local motion in PC, resulting in no contribution to the antiplasticization phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Uchiyama A, Yatabe T. Control of wavelength dispersion of birefringence for oriented copolycarbonate films containing positive and negative birefringent units. Jpn J Appl Phys. 2003;42:6941–5.

    Article  CAS  Google Scholar 

  2. Ueda M. A study on the characteristics of antiplasticized polycarbonates and their optical disk substrates. Polym Eng Sci. 2004;44:1877–84.

    Article  CAS  Google Scholar 

  3. Soles CL, Burns AB, Ito K, Chan E, Liu J, Yee AF, Tyagi MS. Importance of sub-nanosecond fluctuations on the toughness of polycarbonate glasses. Macromolecules. 2020;53:6672–81.

    Article  CAS  Google Scholar 

  4. Soles CL, Burns AB, Ito K, Chan EP, Douglas JF, Wu J, et al. Why enhanced subnanosecond relaxations are important for toughness in polymer glasses. Macromolecules. 2021;54:2518–28.

    Article  CAS  Google Scholar 

  5. Nassar T, Paul D, Barlow J. Polyester–polycarbonate blends. II. Poly (ethylene terephthalate). J Appl Polym Sci. 1979;23:85–99.

    Article  CAS  Google Scholar 

  6. Miller R, Brooks R, Briddell J. Characterization of polyester/polycarbonate blends by size exclusion chromatography and melt rheometry. Polym Eng Sci. 1990;30:59–62.

    Article  CAS  Google Scholar 

  7. Sue H-J, Huang J, Yee AF. Interfacial adhesion and toughening mechanisms in an alloy of polycarbonate/polyethylene. Polymer. 1992;33:4868–71.

    Article  CAS  Google Scholar 

  8. Sung Y, Kum C, Lee H, Byon N, Yoon HG, Kim WN. Dynamic mechanical and morphological properties of polycarbonate/multi-walled carbon nanotube composites. Polymer. 2005;46:5656–61.

    Article  CAS  Google Scholar 

  9. Jackson WJ, Caldwell JR. Antiplasicization. II. Characteristics of antiplasticizers. J Appl Polym Sci. 1967;11:211–26.

    Article  CAS  Google Scholar 

  10. Jackson WJ, Caldwell JR. Antiplasicization. III. Characteristics and properties of Antiplasticizable Polymers. J Appl Polym Sci. 1967;11:227–44.

    Article  CAS  Google Scholar 

  11. Xiao C, Yang WL, Yee AF. Positronium annihilation lifetime and dynamic mechanical studies of γ-relaxation in BPA-PC. Macromolecules. 1999;32:7913–1920.

    Article  CAS  Google Scholar 

  12. Roussenova M, Murith M, Alam A, Ubbink J. Plasticization, antiplasticization, and molecular packing in amorphous carbohydrate-grycerol matrices. Biomacromolecules. 2010;11:3237–47.

    Article  CAS  PubMed  Google Scholar 

  13. Robeson L. The effect of antiplasticization on secondary loss transitions and permeability of polymers. Polym Eng Sci. 1969;9:277–81.

    Article  CAS  Google Scholar 

  14. Belfiore L, Henrichs P, Cooper SL. Diluent effects on carbonate mobility in bisphenol-A polycarbonate in the solid state. Polymer. 1984;25:452–8.

    Article  CAS  Google Scholar 

  15. Wehrle M, Hellmann GP, Spiess HW. Phenylene motion in polycarbonate and polycarbonate-additive mixtures. Colloid Polym Sci. 1987;265:815–22.

    Article  CAS  Google Scholar 

  16. Ngai KL, Rendell RW, Yee AF. Local molecular motions in glassy and dissolved polycarbonates. Macromolecules. 1988;21:3396–401.

    Article  CAS  Google Scholar 

  17. Liu Y, Inglefield PT, Jones AA. Domain size of dynamic heterogeneities in antiplasticized polycarbonate by proton spin diffusion. Magn Reson Chem. 1994;32:S18–S22.

    Article  CAS  Google Scholar 

  18. Jones A, Inglefield P, Liu Y, Roy A, Cauley B. A lattice model for dynamics in a mixed polymer-diluent glass. J Non-Cryst Solids. 1991;131:556–62.

    Article  Google Scholar 

  19. Ngai KL, Rendell RW, Yee AF, Plazek DJ. Antiplasticization effects on a secondary relaxation in plasticized glassy polycarbonates. Macromolecules. 1991;24:61–7.

    Article  CAS  Google Scholar 

  20. Butzbach G, Wendorff J. Polycarbonate-poly (methyl methacrylate) blends: the role of molecular interactions on miscibility and antiplasticization. Polymer. 1991;32:1155–9.

    Article  CAS  Google Scholar 

  21. Bergquist P, Jones AA, Inglefield PT. Plasticization and antiplasticization in polycarbonates the role of diluent motion. Macromolecules. 1999;32:7925–31.

    Article  CAS  Google Scholar 

  22. Miyagawa A, Nobukawa S, Yamaguchi M. Thermal expansion behavior of antiplasticized polycarbonate. Nihon Reoroji Gakkaishi. 2014;42:255–60.

    Article  CAS  Google Scholar 

  23. Sako T, Miyagawa A, Yamaguchi M. Modulus enhancement of polycarbonate by addition of lithium perchlorate. J Appl Polym. Sci. 2017;134:44882.

    Article  Google Scholar 

  24. Anderson SL, Grulke EA, DeLassusJIs PT, Smith PB, Kocher CW, Landes BG. A model for antiplasticization in polystyrene. Macromolecules. 1995;28:2944–54.

    Article  CAS  Google Scholar 

  25. Garcia A, Iriarte M, Uriarte C, Iruin JJ, Etxeberria A, Rio JD. Antiplasticization of a polyamide: a positron annihilation lifetime spectroscopy study. Polymer. 2004;45:2949–57.

    Article  CAS  Google Scholar 

  26. Roussenova M, Murith M, Alam A, Ubbink J. Plasticization, antiplasticization, and molecular packing in amorphous carbohydrate-glycerol matrices. Biomacromolecules. 2010;11:3237–47.

    Article  CAS  PubMed  Google Scholar 

  27. Razinskaya IN, Shtarkman BP, Izvozchikova VA, Averbakh NY, Monich IM, Bubnova LP, Pupukina NI. Anti-plasticization of Polymethylmethacrylate. Polym Sci USSR. 1984;26:1806–13.

    Article  Google Scholar 

  28. Miyagawa A, Ayerdurai V, Nobukawa S, Yamaguchi M. Viscoelastic properties of poly(methyl methacrylate) with high glass transition temperature by lithium salt addition. J Polym Sci Part B: Polym Phys. 2016;54:2388–94.

    Article  CAS  Google Scholar 

  29. Alegria A, Mitxelena O, Colmenero J. On the molecular motions originating from the dielectric γ-relaxation of bisphenol-A polycarbonate. Macromolecules. 2006;39:2691–9.

    Article  CAS  Google Scholar 

  30. Maeda M, Nobukawa S, Inomata K, Yamaguchi M. Effect of molecular size on the correlated dynamics of low-mass molecule and local chain motion in antiplasticized polycarbonate. Nihon Reoroji Gakkaishi. 2019;47:111–7.

    Article  CAS  Google Scholar 

  31. Rouabah F, Fois M, Ibos L, Boudenne A, Picard C, Dadache D, Haddaoui N. Mechanical and thermal properties of polycarbonate, part 1: influence of free quenching. J Appl Polym Sci. 2008;109:1505–14.

    Article  CAS  Google Scholar 

  32. Miyagawa A, Korkiatithaweechai S, Nobukawa S, Yamaguchi M. Mechanical and optical properties of polycarbonate containing p-Terphenyl. Ind Eng Chem Res. 2013;52:5048–53.

    Article  CAS  Google Scholar 

  33. Onsager L. Electric moments of molecules in liquids. J Am Chem Soc. 1936;58:1486–93.

    Article  CAS  Google Scholar 

  34. Gaussian 09, Revision A.02. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian, Inc., Wallingford CT: 2016.

  35. Bubnova L, Razinskaya I, Burshtein L, Borisova T, Shtarkman B. Dielectric relaxation and structure of polymethyl methacrylate and polyvinyl chloride mixtures. Polym Sci USSR. 1976;18:2897–905.

    Article  Google Scholar 

  36. Havriliak S, Negami S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer. 1967;8:161–210.

    Article  CAS  Google Scholar 

  37. Kremer F, Schönhals A. Broadband Dielectric Spectroscopy. Berlin: Springer-Verlag; 2003.

  38. Nobukawa S, Urakawa O, Shikata T, Inoue T. Cooperative dynamics in polystyrene and low-mass molecule mixtures. Macromolecules. 2011;44:8324–32.

    Article  CAS  Google Scholar 

  39. Nobukawa S, Urakawa O, Shikata T, Inoue T. Dynamics of a probe molecule dissolved in several polymer matrices with different side-chain structures: Determination of correlation length relevant to glass transition. Macromolecules. 2013;46:2206–15.

    Article  CAS  Google Scholar 

  40. Logan S. The origin and status of the Arrhenius equation. J Chem Educ. 1982;59:279–81.

    Article  CAS  Google Scholar 

  41. Urakawa O, Kaneko F, Kobayashi H. Dielectric relaxation of guest molecules in a clathrate structure of syndiotactic polystyrene. J Phys Chem B. 2012;116:14461–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kobayashi H, Urakawa O, Kaneko F, Inoue T. Dynamics of polar low mass molecules encapsulated in the δ-cocrystal of syndiotactic polystyrene. Nihon Reoroji Gakkaishi. 2014;42:19–23.

    Article  CAS  Google Scholar 

  43. Kobayashi H, Urakawa O, Kaneko F, Inoue T. Dynamics of polar aromatic molecules confined in a nanocavity of δ-phase of syndiotactic polystyrene as studied by dielectric spectroscopy. Chem Phys. 2016;479:122–8.

    Article  CAS  Google Scholar 

  44. Schmidt-Rohr K, Spiess H. Nature of nonexponential loss of correlation above the glass transition investigated by multidimensional NMR. Phys Rev Lett. 1991;66:3020.

    Article  CAS  PubMed  Google Scholar 

  45. Cicerone MT, Ediger M. Relaxation of spatially heterogeneous dynamic domains in supercooled ortho‐terphenyl. J Chem Phys. 1995;103:5684–92.

    Article  CAS  Google Scholar 

  46. Baraldi I, Ponterini G. Theoretical conformational analysis of p-, m-, and o-terphenyl. Theochem J Mol Struct. 1985;122:287–98.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by JSPS KAKENHI (Grant Number 19K05613) (SN) and the Sasakawa Scientific Research Grant from the Japan Science Society (MM). The DMA measurement was supported by the Equipment Sharing Division, Organization for Co-Creation Research and Social Contributions, Nagoya Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Nobukawa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, M., Nobukawa, S. & Inomata, K. Anisotropic rotational dynamics of rod-like low-mass molecules in polycarbonate. Polym J 54, 21–31 (2022). https://doi.org/10.1038/s41428-021-00562-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00562-3

  • Springer Nature Limited

Navigation