Skip to main content

Advertisement

Log in

Bcl10 is required for the development and suppressive function of Foxp3+ regulatory T cells

  • Article
  • Published:
Cellular & Molecular Immunology Submit manuscript

Abstract

Foxp3+ regulatory T (Treg) cells play a critical role in peripheral tolerance. Bcl10, acting as a scaffolding protein in the Carma1-Bcl10-Malt1 (CBM) complex, has a critical role in TCR-induced signaling, leading to NF-κB activation and is required for T-cell activation. The role of Bcl10 in conventional T (Tconv) cells has been well characterized; however, the role of Bcl10 in the development of Treg cells and the maintenance of the suppressive function and identity of these cells has not been well characterized. In this study, we found that Bcl10 was required for not only the development but also the function of Treg cells. After deleting Bcl10 in T cells, we found that the development of Treg cells was significantly impaired. When Bcl10 was specifically deleted in mature Treg cells, the suppressive function of the Treg cells was impaired, leading to lethal autoimmunity in Bcl10fl/flFoxp3cre mice. Consistently, in contrast to WT Treg cells, Bcl10-deficient Treg cells could not protect Rag1-deficient mice from T-cell transfer-induced colitis. Furthermore, Bcl10-deficient Treg cells downregulated the expression of a series of Treg-cell effector and suppressive genes and decreased effector Treg-cell populations. Moreover, Bcl10-deficient Treg cells were converted into IFNγ-producing proinflammatory cells with increased expression of the transcription factors T-bet and HIF-1α. Together, our study results provide genetic evidence, indicating that Bcl10 is required for the development and function of Treg cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li, M. O. & Rudensky, A. Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat. Rev. Immunol. 16, 220–233 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Li M., et al. A wave of Foxp3(+) regulatory T cell accumulation in the neonatal liver plays unique roles in maintaining self-tolerance. Cell Mol. Immunol. 2019. [Epub ahead of print].

  3. Workman, C. J., Szymczak-Workman, A. L., Collison, L. W., Pillai, M. R. & Vignali, D. A. The development and function of regulatory T cells. Cell Mol. Life Sci. 66, 2603–2622 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  5. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  6. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  7. Kumar, P. et al. Critical role of OX40 signaling in the TCR-independent phase of human and murine thymic Treg generation. Cell Mol. Immunol. 16, 138–153 (2019).

    CAS  PubMed  Google Scholar 

  8. Nishikawa, H. & Sakaguchi, S. Regulatory T cells in tumor immunity. Int J. Cancer 127, 759–767 (2010).

    CAS  PubMed  Google Scholar 

  9. Huehn, J. et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J. Exp. Med. 199, 303–313 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Smigiel, K. S. et al. Correction: CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med. 216, 1965 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fisson, S. et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med. 198, 737–746 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Marangoni, F. et al. Tumor tolerance-promoting function of regulatory T cells is optimized by CD28, but strictly dependent on calcineurin. J. Immunol. 200, 3647–3661 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cretney, E. et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol. 12, 304–311 (2011).

    CAS  PubMed  Google Scholar 

  14. Busse, M., Krech, M., Meyer-Bahlburg, A., Hennig, C. & Hansen, G. ICOS mediates the generation and function of CD4+CD25+Foxp3+ regulatory T cells conveying respiratory tolerance. J. Immunol. 189, 1975–1982 (2012).

    CAS  PubMed  Google Scholar 

  15. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8, 359–368 (2007).

    CAS  PubMed  Google Scholar 

  16. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    CAS  PubMed  Google Scholar 

  17. Fontenot, J. D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341 (2005).

    CAS  PubMed  Google Scholar 

  18. Levine, A. G., Arvey, A., Jin, W. & Rudensky, A. Y. Continuous requirement for the TCR in regulatory T cell function. Nat. Immunol. 15, 1070–1078 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo, C. T. & Li, M. O. Transcriptional control of regulatory T cell development and function. Trends Immunol. 34, 531–539 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ruan, Q. et al. Development of Foxp3(+) regulatory t cells is driven by the c-Rel enhanceosome. Immunity 31, 932–940 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Oh, H. et al. An NF-kappaB transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity 47, 450–465 e455 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Long, M., Park, S. G., Strickland, I., Hayden, M. S. & Ghosh, S. Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31, 921–931 (2009).

    CAS  PubMed  Google Scholar 

  23. Isomura, I. et al. c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells. J. Exp. Med 206, 3001–3014 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Messina, N. et al. The NF-kappaB transcription factor RelA is required for the tolerogenic function of Foxp3(+) regulatory T cells. J. Autoimmun. 70, 52–62 (2016).

    CAS  PubMed  Google Scholar 

  25. Sommer, K. et al. Phosphorylation of the CARMA1 linker controls NF-kappaB activation. Immunity 23, 561–574 (2005).

    CAS  PubMed  Google Scholar 

  26. Medeiros, R. B. et al. Regulation of NF-kappaB activation in T cells via association of the adapter proteins ADAP and CARMA1. Science 316, 754–758 (2007).

    CAS  PubMed  Google Scholar 

  27. Matsumoto, R. et al. Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation. Immunity 23, 575–585 (2005).

    CAS  PubMed  Google Scholar 

  28. Lee, K. Y., D’Acquisto, F., Hayden, M. S., Shim, J. H. & Ghosh, S. PDK1 nucleates T cell receptor-induced signaling complex for NF-kappaB activation. Science 308, 114–118 (2005).

    CAS  PubMed  Google Scholar 

  29. Blonska, M. et al. The CARMA1-Bcl10 signaling complex selectively regulates JNK2 kinase in the T cell receptor-signaling pathway. Immunity 26, 55–66 (2007).

    CAS  PubMed  Google Scholar 

  30. Jattani, R. P., Tritapoe, J. M. & Pomerantz, J. L. Cooperative control of caspase recruitment domain-containing protein 11 (CARD11) signaling by an unusual array of redundant repressive elements. J. Biol. Chem. 291, 8324–8336 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jattani, R. P., Tritapoe, J. M. & Pomerantz, J. L. Intramolecular interactions and regulation of cofactor binding by the four repressive elements in the caspase recruitment domain-containing protein 11 (CARD11) Inhibitory domain. J. Biol. Chem. 291, 8338–8348 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Qiao, Q. et al. Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol. Cell 51, 766–779 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin, X. & Wang, D. The roles of CARMA1, Bcl10, and MALT1 in antigen receptor signaling. Semin Immunol. 16, 429–435 (2004).

    CAS  PubMed  Google Scholar 

  34. Molinero, L. L. et al. CARMA1 controls an early checkpoint in the thymic development of FoxP3+ regulatory T cells. J. Immunol. 182, 6736–6743 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brustle, A. et al. MALT1 is an intrinsic regulator of regulatory T cells. Cell Death Differ. 24, 1214–1223 (2017).

    CAS  PubMed  Google Scholar 

  36. Campos-Mora, M. et al. CD4+Foxp3+T Regulatory cells promote transplantation tolerance by modulating effector CD4+ T cells in a neuropilin-1-dependent manner. Front. Immunol. 10, 882 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    CAS  PubMed  Google Scholar 

  38. Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007).

    CAS  PubMed  Google Scholar 

  39. Wilson, C. B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9, 91–105 (2009).

    CAS  PubMed  Google Scholar 

  40. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    CAS  PubMed  Google Scholar 

  41. Koenecke, C. et al. IFN-gamma production by allogeneic Foxp3+ regulatory T cells is essential for preventing experimental graft-versus-host disease. J. Immunol. 189, 2890–2896 (2012).

    CAS  PubMed  Google Scholar 

  42. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Acosta-Iborra, B. et al. Macrophage oxygen sensing modulates antigen presentation and phagocytic functions involving IFN-gamma production through the HIF-1 alpha transcription factor. J. Immunol. 182, 3155–3164 (2009).

    CAS  PubMed  Google Scholar 

  44. Lee, J. H., Elly, C., Park, Y. & Liu, Y. C. E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1alpha to maintain regulatory T cell stability and suppressive capacity. Immunity 42, 1062–1074 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosenbaum, M. et al. Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nat. Commun. 10, 2352 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. Di Pilato, M. et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature 570, 112–116 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Cheng, L., Deng, N., Yang, N., Zhao, X. & Lin, X. Malt1 protease is critical in maintaining function of regulatory T cells and may be a therapeutic target for antitumor immunity. J. Immunol. 202, 3008–3019 (2019).

    CAS  PubMed  Google Scholar 

  48. Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature 491, 554–559 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu, L. F. et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142, 914–929 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ruland, J. & Hartjes, L. CARD-BCL-10-MALT1 signalling in protective and pathological immunity. Nat. Rev. Immunol. 19, 118–134 (2019).

    CAS  PubMed  Google Scholar 

  52. O’Rourke D. M., et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, pii: eaaa0984 (2017).

  53. Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Chen Dong for providing the Rag1−/−, CD4cre and Foxp3cre-YFP mice and Dr. Li Wu for providing the CD45.1+ mice. We thank the Laboratory Animal Research Center of Tsinghua University for help with microinjections. This work was supported by grants from the National Natural Science Foundation of China (81570211 to X.L. and 31670904 to X.Z.) and funding from the Tsinghua University-Peking University Jointed Center for Life Sciences (to X.L.).

Author information

Authors and Affiliations

Authors

Contributions

Yang D performed all of the experiments, and Lin X and Zhao X directed the experiments. Yang D, Zhao X, and Lin X wrote the manuscript.

Corresponding author

Correspondence to Xin Lin.

Ethics declarations

Competing interests

All institutional and national guidelines for the care and use of laboratory animals were followed. The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Zhao, X. & Lin, X. Bcl10 is required for the development and suppressive function of Foxp3+ regulatory T cells. Cell Mol Immunol 18, 206–218 (2021). https://doi.org/10.1038/s41423-019-0297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0297-y

  • Springer Nature Limited

Keywords

This article is cited by

Navigation