Skip to main content

Advertisement

Log in

Lysine methyltransferase SMYD2 enhances androgen receptor signaling to modulate CRPC cell resistance to enzalutamide

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

Androgen receptors (ARs) play key roles in prostate cancer (PCa) progression and castration-resistant prostate cancer (CRPC) resistance to drug therapy. SET and MYND domain containing protein 2 (SMYD2), a lysine methyltransferase, has been reported to promote tumors by transcriptionally methylating important oncogenes or tumor repressor genes. However, the role of SMYD2 in CRPC drug resistance remains unclear. In this study, we found that SMYD2 expression was significantly upregulated in PCa tissues and cell lines. High SMYD2 expression indicated poor CRPC-free survival and overall survival in patients. SMYD2 knockdown dramatically inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) potential of 22Rv1 and C4-2 cells. Conversely, ectopic overexpression of SMYD2 promoted these effects in 22Rv1 and C4-2 cells. Mechanistically, SMYD2 methylated and phosphorylated ARs to affect AR ubiquitination and proteasome degradation, which further alters the AR transcriptome in CRPC cells. Importantly, the SMYD2 inhibitor AZ505 had a synergistic therapeutic effect with enzalutamide in CRPC cells and mouse models; however, it could also re-sensitize resistant CRPC cells to enzalutamide. Our findings demonstrated that SMYD2 enhances the methylation and phosphorylation of ARs and affects AR ubiquitination and proteasome degradation to modulate CRPC cell resistance to enzalutamide, indicating that SMYD2 serves as a crucial oncogene in PCa and is an ideal therapeutic target for CRPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: SMYD2 expression is upregulated and associated with poor prognosis in PCa.
Fig. 2: Abnormally overexpressed SMYD2 results in PCa progression.
Fig. 3: SMYD2 physically interacts with AR and regulates the AR methylation.
Fig. 4: SMYD2 regulates AR degradation and signaling.
Fig. 5: SMYD2 knockdown reduces AR binding to DNA and expression of corresponding genes.
Fig. 6: Pharmacological intervention of SMYD2 synergizes enzalutamide in CRPC cells.
Fig. 7: A working model of the SMYD2-AR signaling pathway modulating CRPC cell resistance to enzalutamide.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors upon reasonable request. The accession numbers of the RNA-seq data and ChIP-seq data is SRA: PRJNA963230.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  3. Saad F, Efstathiou E, Attard G, Flaig TW, Franke F, Goodman OB Jr, et al. Apalutamide plus abiraterone acetate and prednisone versus placebo plus abiraterone and prednisone in metastatic, castration-resistant prostate cancer (ACIS): a randomised, placebo-controlled, double-blind, multinational, phase 3 study. Lancet Oncol. 2021;22:1541–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE, et al. Prostate cancer. Nat Rev Dis Primers. 2021;7:9.

    Article  PubMed  Google Scholar 

  5. Sternberg CN, Fizazi K, Saad F, Shore ND, De Giorgi U, Penson DF, et al. Enzalutamide and survival in nonmetastatic, castration-resistant prostate cancer. N Engl J Med. 2020;382:2197–206.

    Article  CAS  PubMed  Google Scholar 

  6. Ryan CJ, Smith MR, Fizazi K, Saad F, Mulders PF, Sternberg CN, et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2015;16:152–60.

    Article  CAS  PubMed  Google Scholar 

  7. Sperger JM, Emamekhoo H, McKay RR, Stahlfeld CN, Singh A, Chen XE, et al. Prospective evaluation of clinical outcomes using a multiplex liquid biopsy targeting diverse resistance mechanisms in metastatic prostate cancer. J Clin Oncol. 2021;39:2926–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong YN, Ferraldeschi R, Attard G, de Bono J. Evolution of androgen receptor targeted therapy for advanced prostate cancer. Nat Rev Clin Oncol. 2014;11:365–76.

    Article  CAS  PubMed  Google Scholar 

  9. Pala L, De Pas T, Conforti F. Boosting anticancer immunotherapy through androgen receptor blockade. Cancer Cell. 2022;40:455–7.

    Article  CAS  PubMed  Google Scholar 

  10. Guan X, Polesso F, Wang C, Sehrawat A, Hawkins RM, Murray SE, et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature. 2022;606:791–6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Aurilio G, Cimadamore A, Mazzucchelli R, Lopez-Beltran A, Verri E, Scarpelli M, et al. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells. 2020;9:2653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guddati AK. Current and potential targets for drug design in the androgen receptor pathway for prostate cancer. Expert Opin Drug Discov. 2018;13:489–96.

    Article  PubMed  Google Scholar 

  13. Chi KN, Chowdhury S, Bjartell A, Chung BH, Pereira de Santana Gomes AJ, Given R, et al. Apalutamide in patients with metastatic castration-sensitive prostate cancer: final survival analysis of the randomized, double-blind, Phase III TITAN study. J Clin Oncol. 2021;39:2294–303.

    Article  CAS  PubMed  Google Scholar 

  14. Fizazi K, Shore N, Tammela TL, Ulys A, Vjaters E, Polyakov S, et al. Nonmetastatic, castration-resistant prostate cancer and survival with darolutamide. N Engl J Med. 2020;383:1040–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Chen J, Wu Z, Ding W, Gao S, Gao Y, et al. Mechanisms of enzalutamide resistance in castration-resistant prostate cancer and therapeutic strategies to overcome it. Br J Pharmacol. 2021;178:239–61.

    Article  CAS  PubMed  Google Scholar 

  16. Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 2014;33:2815–25.

    Article  CAS  PubMed  Google Scholar 

  17. He MX, Cuoco MS, Crowdis J, Bosma-Moody A, Zhang Z, Bi K, et al. Transcriptional mediators of treatment resistance in lethal prostate cancer. Nat Med. 2021;27:426–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carlson SM, Gozani O. Nonhistone lysine methylation in the regulation of cancer pathways. Cold Spring Harb Perspect Med. 2016;6:a026435.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang YC, Peterson SE, Loring JF. Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res. 2014;24:143–60.

    Article  PubMed  Google Scholar 

  20. Yi X, Jiang XJ, Fang ZM. Histone methyltransferase SMYD2: ubiquitous regulator of disease. Clin Epigenetics. 2019;11:112.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang R, Deng X, Yoshioka Y, Vougiouklakis T, Park JH, Suzuki T, et al. Effects of SMYD2-mediated EML4-ALK methylation on the signaling pathway and growth in non-small-cell lung cancer cells. Cancer Sci. 2017;108:1203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu YQ, Thonn V, Patankar JV, Thoma OM, Waldner M, Zielinska M, et al. SMYD2 targets RIPK1 and restricts TNF-induced apoptosis and necroptosis to support colon tumor growth. Cell Death Dis. 2022;13:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeng Y, Qiu R, Yang Y, Gao T, Zheng Y, Huang W, et al. Regulation of EZH2 by SMYD2-mediated lysine methylation is implicated in tumorigenesis. Cell Rep. 2019;29:1482–98.e4.

    Article  CAS  PubMed  Google Scholar 

  24. Cho HS, Hayami S, Toyokawa G, Maejima K, Yamane Y, Suzuki T, et al. RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia. 2012;14:476–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu L, Kou F, Ji Z, Li B, Zhang B, Guo Y, et al. SMYD2 promotes tumorigenesis and metastasis of lung adenocarcinoma through RPS7. Cell Death Dis. 2021;12:439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ji Y, Xu X, Long C, Wang J, Ding L, Zheng Z, et al. SMYD2 aggravates gastrointestinal stromal tumor via upregulation of EZH2 and downregulation of TET1. Cell Death Discov. 2022;8:274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, et al. Repression of p53 activity by Smyd2-mediated methylation. Nature. 2006;444:629–32.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Li LX, Zhou JX, Calvet JP, Godwin AK, Jensen RA, Li X. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression. Cell Death Dis. 2018;9:326.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang X, Tanaka K, Yan J, Li J, Peng D, Jiang Y, et al. Regulation of estrogen receptor alpha by histone methyltransferase SMYD2-mediated protein methylation. Proc Natl Acad Sci USA. 2013;110:17284–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Tang M, et al. SMYD2 inhibition-mediated hypomethylation of Ku70 contributes to impaired nonhomologous end joining repair and antitumor immunity. Sci Adv. 2023;9:eade6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamamoto R, Toyokawa G, Nakakido M, Ueda K, Nakamura Y. SMYD2-dependent HSP90 methylation promotes cancer cell proliferation by regulating the chaperone complex formation. Cancer Lett. 2014;351:126–33.

    Article  CAS  PubMed  Google Scholar 

  32. Piao L, Kang D, Suzuki T, Masuda A, Dohmae N, Nakamura Y, et al. The histone methyltransferase SMYD2 methylates PARP1 and promotes poly(ADP-ribosyl)ation activity in cancer cells. Neoplasia. 2014;16:257–64.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakakido M, Deng Z, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN. Neoplasia. 2015;17:367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu W, Wang J, Xiao C, Su Z, Su H, Zhong W, et al. SMYD2-mediated TRAF2 methylation promotes the NF-kappaB signaling pathways in inflammatory diseases. Clin Transl Med. 2021;11:e591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wen S, Niu Y, Huang H. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer. Asian J Urol. 2020;7:203–18.

    Article  PubMed  Google Scholar 

  36. Ferguson AD, Larsen NA, Howard T, Pollard H, Green I, Grande C, et al. Structural basis of substrate methylation and inhibition of SMYD2. Structure. 2011;19:1262–73.

    Article  CAS  PubMed  Google Scholar 

  37. Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, et al. SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell. 2020;38:350–65.e7.

    Article  CAS  PubMed  Google Scholar 

  38. Bhat KP, Umit Kaniskan H, Jin J, Gozani O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov. 2021;20:265–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xin L. EZH2 accompanies prostate cancer progression. Nat Cell Biol. 2021;23:934–6.

    Article  CAS  PubMed  Google Scholar 

  40. Komatsu S, Ichikawa D, Hirajima S, Nagata H, Nishimura Y, Kawaguchi T, et al. Overexpression of SMYD2 contributes to malignant outcome in gastric cancer. Br J Cancer. 2015;112:357–64.

    Article  CAS  PubMed  Google Scholar 

  41. Meng F, Liu X, Lin C, Xu L, Liu J, Zhang P, et al. SMYD2 suppresses APC2 expression to activate the Wnt/beta-catenin pathway and promotes epithelial-mesenchymal transition in colorectal cancer. Am J Cancer Res. 2020;10:997–1011.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Culig Z, Santer FR. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev. 2014;33:413–27.

    Article  CAS  PubMed  Google Scholar 

  43. Ferraldeschi R, Welti J, Luo J, Attard G, de Bono JS. Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects. Oncogene. 2015;34:1745–57.

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Zhong W, Cheng Q, Xiao C, Xu J, Su Z, et al. Histone methyltransferase Smyd2 contributes to blood-brain barrier breakdown in stroke. Clin Transl Med. 2022;12:e761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ko S, Ahn J, Song CS, Kim S, Knapczyk-Stwora K, Chatterjee B. Lysine methylation and functional modulation of androgen receptor by Set9 methyltransferase. Mol Endocrinol. 2011;25:433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013;500:598–602.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Williamson M, de Winter P, Masters JR. Plexin-B1 signalling promotes androgen receptor translocation to the nucleus. Oncogene. 2016;35:1066–72.

    Article  CAS  PubMed  Google Scholar 

  48. Rocha J, Zouanat FZ, Zoubeidi A, Hamel L, Benidir T, Scarlata E, et al. The Fer tyrosine kinase acts as a downstream interleukin-6 effector of androgen receptor activation in prostate cancer. Mol Cell Endocrinol. 2013;381:140–9.

    Article  CAS  PubMed  Google Scholar 

  49. Linn DE, Yang X, Xie Y, Alfano A, Deshmukh D, Wang X, et al. Differential regulation of androgen receptor by PIM-1 kinases via phosphorylation-dependent recruitment of distinct ubiquitin E3 ligases. J Biol Chem. 2012;287:22959–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Attard G, Parker C, Eeles RA, Schroder F, Tomlins SA, Tannock I, et al. Prostate cancer. Lancet. 2016;387:70–82.

    Article  PubMed  Google Scholar 

  51. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15:701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li J, Yu W, Ge J, Zhang J, Wang Y, Wang P, et al. Targeting eIF3f suppresses the growth of prostate cancer cells by inhibiting Akt signaling. Onco Targets Ther. 2020;13:3739–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bang S, Li J, Zhang M, Cui R, Wu X, Xin Z, et al. The clinical relevance and function of kruppel-like factor 16 in breast cancer. Cancer Manag Res. 2020;12:6373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116:11428–36.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Ross-Adams H, Lamb AD, Dunning MJ, Halim S, Lindberg J, Massie CM, et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: a discovery and validation cohort study. EBioMedicine. 2015;2:1133–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Penney KL, Sinnott JA, Tyekucheva S, Gerke T, Shui IM, Kraft P, et al. Association of prostate cancer risk variants with gene expression in normal and tumor tissue. Cancer Epidemiol Biomarkers Prev. 2015;24:255–60.

    Article  CAS  PubMed  Google Scholar 

  57. Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004;22:2790–9.

    Article  CAS  PubMed  Google Scholar 

  58. Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, Tharakan R, et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell. 2017;32:474–89.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the National Nature Science Foundation of China (82373355, 82172703, and 82303856), the Medical Innovation Research Project of the Science and Technology Commission of Shanghai Municipality (20Y11905000), the Discipline Leader of Shanghai Municipal Health Commission (2022XD013), the China Anti-cancer Association Foundation (YJQN202201), and the Shanghai Sailing Program (20YF1443800).

Author information

Authors and Affiliations

Authors

Contributions

BD and ZH contributed to conceptualization, funding acquisition and project administration. JHL, JYZ, and SFZ performed the in vitro experiments and analyzed data. ZL, FNW, and JHL performed the in vivo experiments. ZH and JHL drafted the initial manuscript and BD critically revised it. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhe Hong or Bo Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study was approved by the Ethics Committee of Fudan University Shanghai Cancer Center (No. 050432-4-1911D), following the Declaration of Helsinki, and written informed consent was obtained from each patient. For the mouse experiments, all animals were housed under a specific pathogen-free environment, and all in vivo experiments were reviewed and approved by the Institutional Animal Care and Use Committee of the Fudan University Shanghai Cancer Center (FUSCC-IACUC-2022035).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hong, Z., Zhang, J. et al. Lysine methyltransferase SMYD2 enhances androgen receptor signaling to modulate CRPC cell resistance to enzalutamide. Oncogene 43, 744–757 (2024). https://doi.org/10.1038/s41388-024-02945-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-02945-1

  • Springer Nature Limited

Navigation